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Why would you want to simulate

a Brown-Resnick process?
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Brown-Resnick process

“Qriginal” definition

PPP ~ v %du & i.i.d. log-Gaussian Brown-Resnick process
U, VO (x) = eW<’><X>-”2<X>/2J Z(x) = V2, UiV (x)
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Properties

The BR process Z is

Brown-Resnick process @ max-stable (here std. Fréchet-margins)
Z(x) = V2 U;eW (=0 ()/2
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Properties

The BR process Z is
Brown-Resnick process @ max-stable (here std. Fréchet-margins)
Z(x) =V, U;eW? 0=*()/2 J @ stationary if the Gaussian process
W has stationary increments

i o fully specified (its law!)
1 by the variogram

- Y(x —y) =E(W(x) — W(y))?

00 02 04 06 08 1.0 1.2

@ arises as max-limit of triangular arrays
o0 e of Gaussian processes

= popular (benchmark) model for spatial extremes
(consistent, parsimonious, tractable, flexible, smoothness control, ...)
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Simulation approaches so far

Notation.
@ K simulation domain

@ N number of points in K
on which Z shall be simulated
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Method/Reference

Stopping rule
for exact simulation

Expected number
of Gaussian processes

@ Original definition

Kabluchko/Schlather/deHaan '09

® Random shift

Oesting/Kabluchko/Schlather '12

© M3 representation

Oesting/Kabluchko/Schlather '12

O L1-normalized spectral process

Dieker/Mikosch '15

© Sup-normalized spectral process

Oesting/Schlather/Zhou '18

O Iterative extremal functions
Dombry/Engelke/Oesting '16

© Record breakers

Liu/Blanchet/Dieker/Mikosch 16+

no

no

no

yes

(yes/no)

yes

yes

unclear

unclear

unclear

N - Cx

Ok - Cx- # MCMC steps
=0O(1) wrt N

N

o(N¢), e >0
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Which to use for exact simulation?

Heuristic! (on average fastest algorithm)

size of domain K

Large e 6 | 7
Medium (6] E (6] E (5}
Small (6} E (6] E (5]

> number of points N
Small Medium Large

O lterative extremal functions Dombry/Engelke/Oesting '16

©® Sup-normalized spectral process Oesting/Schlather/Zhou '18

Inot taking @ Record breakers Liu/Blan./Diek./Mik. 16+ into account, difficult to compare
7/31



What if an error is allowed?

(E.g. to speed up simulation
or make it feasible at all.)
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ThreShOId Stopping as in [Schlather '02]

i.i.d. log-Gaussian J

Brown-Resnick process
VO (x) = WP 0—o00r2 J

ZW(x) = Vi, UV (x)
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First observations (from Slivnyak-Mecke Theorem)

@ expected threshold stopping time
> TE{I/inf Z(x)}
xeK

@ expected number of missing extremal functions

<E<su V/(X)—su T )
- xe!F() Z'(x) xeie Z'(x) +

for independent stochastic processes Z’ and V' with the same
distributions as Z and V/, respectively.

10 /31



PiE) = ((sup|Z(x) ~ 27 ()] > <)

xeK

-1 —Ezm{EXp <—EV<§EE% XEEZ;()))}

rel) |Z(x)—Z(T)(X)|
PKTE—P(igE ZM(x) >5)

=1—Ezﬂ{“P< <$£ Kngx> ﬁﬁzll))+>}

Pr,, =P(Z7) % Z*) on K)

=1-Ezn{ ex su sup 7y
=1-Eznjewp| —Ev mﬁzwv Tk ZTM(x))

V(x)
<E - < Ck- E Vix) —
Gﬁzu)igzgﬂ+ ks Esup(Vix) = 1)

§7 P(supyex V(x) > u)du

_
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Minimal Gaussian Variance

Idea. Choose spectral rep. V(x) = exp(W(x) — 0?(x)/2) such that

sup W(x) — o?(x)/2 becomes as “light tailed” as possible.
xeK
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Minimal Gaussian Variance

Idea. Choose spectral rep. V(x) = exp(W(x) — 0?(x)/2) such that

sup W(x) — o?(x)/2 becomes as “light tailed” as possible.
xeK

PrOpOSition (MO/KS: Application of [Debicki/Kosinski/Mandjes/Rolski '10])

Let {W;(x),x € K}, i = 1,2 be centered Gaussian processes with a.s.
bounded sample paths and variance functions o?(x) = Var(W;(x)) and

sup o3 (x) < supos(x) <
xeK xeK
Then
sup,cx Wi(x) — 02(x)/2 has lighter tail than sup,, Wa(x) — 02(x)/2.

v

12/31



Minimal Gaussian Variance

Problem. Find centred sample-continuous Gaussian process W
@ minimizing sup,., Var(W(x)) )
@ subject to y(x —y) = E(W(x) — W(y))? x,y € K (n
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Minimal Gaussian Variance

Problem. Find centred sample-continuous Gaussian process W
@ minimizing sup,., Var(W(x)) )
@ subject to y(x —y) = E(W(x) — W(y))? x,y € K (n

[Matheron '74]
Let W, be any (reference) process satisfying (11).
Then the solution can be represented as

W2 (x) = Wy(x) —f Wo(x")\(dx"), xe K
K

for some probability measure A on K.

= “Parametrization by probability measures A\ on K.”

13 /31



e Wy = B = std. Brownian motion on K = [—R, R] (variogram ~(x) = |x|)
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o Wy = B = std. Brownian motion on K = [—R, R] (variogram ~(x) = |x|)

@ Modified Brownian motion with A = %(LR + %JR
1 1
WA (x) = Wo(x) —f Wo(x)A\(dx") = B(x) — (B(—R) + B(R))
K

has the same variogram.
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e Wy = B = std. Brownian motion on K

= [—R, R] (variogram ~(x) = |x|)

@ Modified Brownian motion with A = %(LR + %JR

Wo(x) — J;( Wo(x")A(dx")

has the same variogram.

Original Brownian motions

1

B(x) — (

Modified Brownian motions

©
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e Wy = B = std. Brownian motion on K = [—R, R] (variogram ~(x) = |x|)

@ Modified Brownian motion with A = %(LR + %JR

1 1
WA (x) = Wo(x) —f Wo(x)A\(dx") = B(x) — (28(—.‘?) + 2B(R)>
K
has the same variogram.
Original Brownian motions Modified Brownian motions

©

This choice minimizes A — sup,¢[_g g] Var(W?(x)).

It is even locally stationary.
14 /31



More generally ...

PrOpOSition (MO/KS: Application of [Matheron '74])
Let

o v(x) = v¥(||x||?) be a convex variogram on R¢
and W; a reference process with variogram -,

o K = R? compact, such that S(Ex(K)) acts transitively on Ex(K)

Then the modified process

WA (x) = Wo(x) —f Wo(x")A(dx'), xe K
K

with A = uniform distribution on Ex(K)
minimizes A — sup, ., Var(W*(x)).

Example. v(x) = ||x]|%, « € [1,2) (fractional Brownian sheet)
on a hyperrectangle K = ]_[Ll[—R,-, R;] (d-dim’l simulation window)

15 /31



For o = 1 the modified fractional Brownian motion

B.(x) = Ba(x) — (—Ba(—R) + %BQ(R)>

minimizes W — sup,¢[_g g) Var(W(x))
(among Gaussian processes with variogram v(x) = ||x]|%).

Original fBM (a = 1.5) Modified fBM (a = 1.5)

16 / 31



Problem. Find centred sample-continuous Gaussian process W
@ minimizing sup,, Var(W(x)) )
@ subject to y(x —y) = E(W(x) — W(y))? x,y € K (1

What if the variogram is not convex?

17 /31



Still subtracting vertices reduces the variance

Proposition
Let

e v(x) = 9(||x||?) for a Bernstein function 1
and W, the reference process on RY with Wy(o) = 0,

o K= H7=1[—R;, R;] be a hyperrectangle.

Then the process

WA (x) = Wo(x) — L WolxWA(dx), x e K

with A = uniform distribution on the vertices of K
reduces W — sup, . Var(W(x)), i.e.,

sup Var(W (x)) < sup Var(Wy(x)).

xeK xeK

Remark. Can replace K with any subset containing the vertices of the hyperrectangle.

18 / 31



Still subtracting vertices reduces the variance

Proof. Need to show Var(W(x)) < sup,cx Var(Wy(x)) for all x € K.

19 /31



Still subtracting vertices reduces the variance
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Still subtracting vertices reduces the variance

Proof. Need to show Var(W(x)) < sup,cx Var(Wy(x)) for all x € K.

1 1
< >d Z ’Y(X—VA)—i’Y(Vm—VA)

(label the vertices (£Ry, £ Ry, ..., +Ry) of K
by Ac {1,...,d} according to +)

= 2% > w3ZR2+ZR2—-¢4ZR2

Ac{l,...,d} ieA JjEA® i€A

(using 2-alternation of v iteratively d times)

< v(w)
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Still subtracting vertices reduces the variance

Proof. Need to show Var(W(x)) < sup,cx Var(Wy(x)) for all x € K.

1 1
< >d Z ’Y(X—VA)—i’Y(Vm—VA)

(label the vertices (£Ry, £ Ry, ..., +Ry) of K
by Ac {1,...,d} according to +)

= 2% > w3ZR2+ZR2—-¢4ZR2

Ac{l,...,d} ieA JjEA® i€A

(using 2-alternation of v iteratively d times)

- ¥(3a+ b) — L(42)

< v(w)

)
=

D=
B
N4

N
=
L

+
=
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Still subtracting vertices reduces the variance

Proof. Need to show Var(W(x)) < sup,cx Var(Wy(x)) for all x € K.
1 1
had >d Z Y(x —va) — §W(Vm —va) < 7(w)

(label the vertices (£Ry, £ Ry, ..., +Ry) of K
by Ac {1,...,d} according to +)

d
- 2id 3 ¢3ZR2+ZR2——¢J4ZR2 < YO R}

Ac{l,...,d} ieA JjEA® i€A i=1

(using 2-alternation of v iteratively d times)
1
= Y(3a+b) — 51/1(43) < ¢(a+b)

which is true for Bernstein functions
(uses combination of 2-alternation and 3-alternation). O

19 /31



More about fractional Brownian sheets ...

Proposition (Combining [Matheron '74] and [Gneiting '00 (Addendum)])
For o € (0, 2) the function

Cx—y)=a—|lx—yl*  x,yeBg(o)
is a covariance function if and only if

e

) por .
a> @) R* =: Aad(R).

(locally stationary rep. on Bg(o) for the variogram y(x —y) = ||x — y||%).

Choosing a = Aqa,¢(R) minimizes W — sup,cg, (o) Var(W(x))
among Gaussian representations for  if and only if d = 1 and o < 1.

20 /31
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Reduced variance.

Minimal variance.
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a=0.7 a=1.0 oa=1.3
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Figure : (above) Variances o?(t) of the Gaussian representations of the variogram

~v(h) = |h/s|* on the domain K = [—1, 1]. The plots show the variance for the original
representation with Wy (0) = 0 (black), the minimal K-stationary representation (red) and the
A-modified representation with A = Unif(Ex(K)) (blue). For oo = 1 the last two coincide. The
scale s > 0 is chosen such that the variance of the minimal K-stationary representation (red) is
normalized to 1.

Figure . (next page) Variances Jz(t) of the Gaussian representations of the variogram

~(h) = ||h//2||“ on the domain K = [—1,1]? for a € {0.7,1.0, 1.3} (left to right). The plots
show the variance for the original representation with W (0) = 0, the minimal K-stationary
representation and the A-modified representation with A = Unif(Ex(K)) (top to bottom).
Minimality of the K-stationary representation refers to the minimal ball B\@(O) containing K.
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Quick wrap up.

@ several situations in which we understand
how to reduce the maximal variance a of Gaussian processes
(subject to fixed variogram)
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Quick wrap up.

@ several situations in which we understand
how to reduce the maximal variance a of Gaussian processes
(subject to fixed variogram)

How can this be useful for BR-simulation?

o helps to pick a (log-)Gaussian spectral representation whose
supremum over the simulation window has a lighter tail

@ which reduces either the error or simulation time
(when simulation is based on threshold stopping)

To what extent?

Comparison with existing methods?
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What can go wrong? (Typical phenomena)

Original definition
(Threshold stopping)

15

Pointwise boxplots of 10000 simulations, Gumbel scale,
each stopped “too early”.
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What can go wrong? (Typical phenomena)

Extremal functions

15

1.0

0.5

0.0

-0.5

5 -4 -3 -2 -1 0 1 2 3 4 5

Pointwise boxplots of 10000 simulations, Gumbel scale,
each stopped “too early”.
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Numerical experiments

Fair comparison?

Tradeoff
Efficiency Accuracy
@ Time = Expected number @ Error = Expected number
of Gaussian processes of missing extremal
to be simulated functions
Fix time. Observe error.

26 /31



Numerical results (dimension 1)

Table : Benchmark error terms IADK,T for the simulation of BR processes on the
interval K = [—1, 1] (step size 0.004) for the variogram ~y(h) = |h/s|*.

Original K- A = Unif(Ex(K)) | Extremal

Scenario definition stationary modification functions
- a=07 0.33 0.07 0.17 0.77
£ a=10 0.21 0.08 0.09 0.55
G a=13 0.09 0.32 0.03 0.32
N a=07 0.76 0.33 0.55 0.85
< a=10 0.51 0.31 0.29 0.64
@ a=13 0.26 0.31 0.13 0.37
m a=07 0.97 0.84 0.96 0.81
S a=10 0.90 0.79 0.81 0.70
@ a=13 0.76 0.72 0.46 0.42

Remark. “True” minimizing measure for & < 1 of discrete problem available. Even better.

Ongoing: comparison with Dieker-Mikosch and others. DM often extremely good.
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Discretization effects

Consider {xi,x2,...,xy} = K = R? (study area).
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Discretization effects

Consider {xi,x2,...,xy} = K = R? (study area).
o for convex variograms: nothing changes
(subtracting extremal points is optimal)
e for concave variograms:

A) Still subtracting vertices with uniform weights helps.
Useful for « close to 1 for v(h) = ||h/s||*.
B) Usually possible to solve

J;( v(x — y)Xo(dy) =1, x e K.

If Ao = 0, then its normalization to a probability measure is Amin.
Useful for d =1 and a € (0, 1) or « close to 0.
C) Remaining cases.

m)‘in mglxlx %(1\ —e) (-rN(x-e") subject to e'A=1,1>0

(Reformulations, augmented problem, dual problem, ...)

28 /31



Open problem

Let I} = ||x; — x;||*, i,j € {1,..., N}, {x1,...,xn} c RY
Consider
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Open problem

Let I} = ||x; — x;||*, i,j € {1,..., N}, {x1,...,xn} c RY
Consider

Conjecture 1.
For d =1 and a € (0, 1] we have A\ > 0.

Conjecture 2.

For d > 2 there exists ayitical = acriticaI(le ce ,XN) € (O' 1)
such that A > 0 for a < agritical-

29 /31



@ Brown-Resnick processes = popular model for spatial extremes.
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Summary

@ Brown-Resnick processes = popular model for spatial extremes.
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Several simulation algorithms are suitable for exact simulation.

@ Once, an error is allowed/necessary: not so clear.
Our focus: Role of simulation domain K.

Very simple trick to reduce/minimize the maximal variance
of Gaussian spectral functions:

Subtract corners of simulation window with equal weights.

o ... always outperforms “original definition”,
comparison with “extremal functions": depends on the scenario.

e Often worthwile doing: Solve discrete optimization problem first.
(Associated open problems for y(h) = |h|*, a € (0, 1))

Ongoing: Comparison with other normalizations (can perform very
well).
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Numerical experiments

Setting.

@ Variogram 7(x) = |x|*

@ Simulation domain K = [—5, 5]

@ Step size 0.02

@ Threshold for “Reduced variance”: T = exp(24/5%/2)

Error = Expected # of missing extremal functions
(based on 25000 simulations)

Threshold stopping Extremal

Original defn. Random shift Reduced variance functions
a=07 1.11 1.35 0.70 3.03
a=1.0 0.97 1.22 0.61 1.24

a=13 0.95 1.08 0.63 0.27
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Boxplots
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Numerical results (dimension 2)

Table : Benchmark error terms IADK,T for the simulation of BR processes on the
square K = [—1,1]? for the variogram ~(h) = (2v/2/7)| h]|.

Original K- A = Unif(Ex(K))  Extremal
Scenario definition stationary modification functions

ots=1,a=1.0 0.07 0.09 0.01 0.73
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