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Why would you want to simulate

a Brown-Resnick process?
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Brown-Resnick process

“Original” definition

PPP „ u´2du
tUiu

8
i“1

& i.i.d. log-Gaussian
V piqpxq “ eW piqpxq´σ2pxq{2

Brown-Resnick process
Zpxq “

Ž8

i“1 Ui V piqpxq

&

[Brown/Resnick ’77, Kabluchko/Schlather/de Haan ’09]
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Properties

Brown-Resnick process
Z pxq “

Ž8

i“1 UieW piq
pxq´σ2

pxq{2

The BR process Z is
max-stable (here std. Fréchet-margins)

stationary if the Gaussian process
W has stationary increments
fully specified (its law!)
by the variogram

γpx ´ yq “ EpW pxq ´W pyqq2

arises as max-limit of triangular arrays
of Gaussian processes

ñ popular (benchmark) model for spatial extremes
(consistent, parsimonious, tractable, flexible, smoothness control, . . . )
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Simulation approaches so far

Notation.
K simulation domain
N number of points in K
on which Z shall be simulated
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Overview

Method/Reference Stopping rule Expected number
for exact simulation of Gaussian processes

Ê Original definition no unclearKabluchko/Schlather/deHaan ’09

Ë Random shift no unclearOesting/Kabluchko/Schlather ’12

Ì M3 representation no unclearOesting/Kabluchko/Schlather ’12

Í L1-normalized spectral process yes N ¨ CKDieker/Mikosch ’15

Î Sup-normalized spectral process (yes/no) θK ¨ CK ¨ # MCMC steps
Oesting/Schlather/Zhou ’18 “ Op1q wrt N

Ï Iterative extremal functions yes NDombry/Engelke/Oesting ’16

Ð Record breakers yes opNεq, ε ą 0Liu/Blanchet/Dieker/Mikosch 16+
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Which to use for exact simulation?

Heuristic1 (on average fastest algorithm)

number of points N

size of domain K

Small Medium Large

Small

Medium

Large

Ï

Ï

Ï

Ï

Ï Ï

Î

Î

?

Ï Iterative extremal functions Dombry/Engelke/Oesting ’16

Î Sup-normalized spectral process Oesting/Schlather/Zhou ’18

1not taking Ð Record breakers Liu/Blan./Diek./Mik. 16+ into account, difficult to compare
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What if an error is allowed?
(E.g. to speed up simulation
or make it feasible at all.)
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Threshold Stopping as in [Schlather ’02]

PPP „ u´2du
tUiu

8
i“1

& i.i.d. log-Gaussian
V piqpxq “ eW piqpxq´σ2pxq{2

Brown-Resnick process
Zpkqpxq “

Žk
i“1 Ui V piqpxq
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First observations (from Slivnyak-Mecke Theorem)

expected threshold stopping time

ě τ E
!

1{ inf
xPK

Z pxq
)

expected number of missing extremal functions

ď E
ˆ

sup
xPK

V 1pxq
Z 1pxq ´ sup

xPK

τ

Z 1pxq

˙

`

for independent stochastic processes Z 1 and V 1 with the same
distributions as Z and V , respectively.
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Error bounds

P(abs)
K ,τ ,ε “ P

´

sup
xPK

|Z pxq ´ Z pT qpxq| ą ε
¯

“ 1´ EZ pT q

"

exp
ˆ

´ EV

ˆ

sup
xPK

V pxq
Z pT qpxq ` ε

´ sup
xPK

τ

Z pT qpxq

˙

`

˙*

P(rel)
K ,τ ,ε “ P

´

sup
xPK

|Z pxq ´ Z pT qpxq|
Z pT qpxq

ą ε
¯

“ 1´ EZ pT q

"

exp
ˆ

´ EV

ˆ

sup
xPK

V pxq
p1` εqZ pT qpxq

´ sup
xPK

τ

Z pT qpxq

˙

`

˙*

PK ,τ “ PpZ pT q ‰ Z p8q on K q

“ 1´ EZ pT q

"

exp
ˆ

´ EV

ˆ

sup
xPK

V pxq
Z pT qpxq

´ sup
xPK

τ

Z pT qpxq

˙

`

˙*

ď E
ˆ

sup
xPK

V pxq
Z pxq ´ sup

xPK

τ

Z pxq

˙

`

ď CK ¨ E sup
xPK
pV pxq ´ τq`

loooooooooomoooooooooon

ş8

τ
PpsupxPK V pxq ą uqdu
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Minimal Gaussian Variance

Idea. Choose spectral rep. V pxq “ exppW pxq ´ σ2pxq{2q such that

sup
xPK

W pxq ´ σ2pxq{2 becomes as “light tailed” as possible.

Proposition (MO/KS: Application of [Debicki/Kosinski/Mandjes/Rolski ’10])

Let tWipxq, x P Ku, i “ 1, 2 be centered Gaussian processes with a.s.
bounded sample paths and variance functions σ2i pxq “ VarpWipxqq and

sup
xPK

σ21pxq ă sup
xPK

σ22pxq ă 8

Then
supxPK W1pxq ´ σ21pxq{2 has lighter tail than supxPK W2pxq ´ σ22pxq{2.
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Minimal Gaussian Variance

Problem. Find centred sample-continuous Gaussian process W

minimizing supxPK VarpW pxqq (I)

subject to γpx ´ yq “ EpW pxq ´W pyqq2, x , y P K (II)

[Matheron ’74]
Let W0 be any (reference) process satisfying (II).
Then the solution can be represented as

W λpxq “W0pxq ´
ż

K
W0px 1qλpdx 1q, x P K

for some probability measure λ on K .

ñ “Parametrization by probability measures λ on K.”
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Example
W0 “ B “ std. Brownian motion on K “ r´R,Rs (variogram γpxq “ |x |)

Modified Brownian motion with λ “ 1
2δ´R `

1
2δR

W λpxq “W0pxq ´
ż

K
W0px 1qλpdx 1q “ Bpxq ´

ˆ

1
2Bp´Rq `

1
2BpRq

˙

has the same variogram.

Original Brownian motions

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

Modified Brownian motions

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

This choice minimizes λ ÞÑ supxPr´R,Rs VarpW λpxqq.
It is even locally stationary.
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More generally . . .

Proposition (MO/KS: Application of [Matheron ’74])

Let
γpxq “ ψp‖x‖2q be a convex variogram on Rd

and W0 a reference process with variogram γ,
K Ă Rd compact, such that SpExpK qq acts transitively on ExpK q

Then the modified process

W λpxq “W0pxq ´
ż

K
W0px 1qλpdx 1q, x P K

with λ = uniform distribution on ExpK q
minimizes λ ÞÑ supxPK VarpW λpxqq.

Example. γpxq = ‖x‖α, α P r1, 2q (fractional Brownian sheet)
on a hyperrectangle K “

śd
i“1r´Ri ,Ri s (d-dim’l simulation window)
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Example

For α ě 1 the modified fractional Brownian motion

rBαpxq “ Bαpxq ´
ˆ

1
2Bαp´Rq `

1
2BαpRq

˙

minimizes W ÞÑ supxPr´R,Rs VarpW pxqq
(among Gaussian processes with variogram γpxq “ ‖x‖α).

Original fBM (α “ 1.5)

−4 −2 0 2 4

−
10

−
5

0
5

10

Modified fBM (α “ 1.5)

−4 −2 0 2 4

−
10

−
5

0
5

10
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Problem. Find centred sample-continuous Gaussian process W

minimizing supxPK VarpW pxqq (I)

subject to γpx ´ yq “ EpW pxq ´W pyqq2, x , y P K (II)

What if the variogram is not convex?

17 / 31



Still subtracting vertices reduces the variance

Proposition (MO/KS)

Let
γpxq “ ψp‖x‖2q for a Bernstein function ψ
and W0 the reference process on Rd with W0poq “ 0,
K “

śd
i“1r´Ri ,Ri s be a hyperrectangle.

Then the process

W λpxq “W0pxq ´
ż

K
W0px 1qλpdx 1q, x P K

with λ = uniform distribution on the vertices of K
reduces W ÞÑ supxPK VarpW pxqq, i.e.,

sup
xPK

VarpW pxqq ď sup
xPK

VarpW0pxqq.

Remark. Can replace K with any subset containing the vertices of the hyperrectangle.
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Still subtracting vertices reduces the variance

Proof. Need to show VarpW pxqq ď supxPK VarpW0pxqq for all x P K .

ô
1
2d

ÿ

AĂt1,...,du
γpx ´ vAq ´

1
2γpv∅ ´ vAq ď γpv∅q

(label the vertices p˘R1,˘R2, . . . ,˘Rdq of K
by A Ă t1, . . . , du according to ˘)

ð
1
2d

ÿ

AĂt1,...,du
ψp3

ÿ

iPA
R2

i `
ÿ

jPAc

R2
j q ´

1
2ψp4

ÿ

iPA
R2

i q ď ψp
d
ÿ

i“1
R2

i q

(using 2-alternation of ψ iteratively d times)

ð ψp3a ` bq ´ 1
2ψp4aq ď ψpa ` bq

which is true for Bernstein functions
(uses combination of 2-alternation and 3-alternation). l
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γpx ´ vAq ´

1
2γpv∅ ´ vAq ď γpv∅q

(label the vertices p˘R1,˘R2, . . . ,˘Rdq of K
by A Ă t1, . . . , du according to ˘)

ð
1
2d

ÿ

AĂt1,...,du
ψp3

ÿ

iPA
R2

i `
ÿ

jPAc

R2
j q ´

1
2ψp4

ÿ

iPA
R2

i q ď ψp
d
ÿ

i“1
R2

i q

(using 2-alternation of ψ iteratively d times)

ð ψp3a ` bq ´ 1
2ψp4aq ď ψpa ` bq

which is true for Bernstein functions
(uses combination of 2-alternation and 3-alternation). l
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More about fractional Brownian sheets . . .

Proposition (Combining [Matheron ’74] and [Gneiting ’00 (Addendum)])

For α P p0, 2q the function

Cpx ´ yq “ a ´ ‖x ´ y‖α, x , y P BRpoq

is a covariance function if and only if

a ě
Γ
` 2´α

2
˘

Γ
` d`α

2
˘

Γ
` d
2
˘ Rα “ : Aα,dpRq.

(locally stationary rep. on BRpoq for the variogram γpx ´ yq “ ‖x ´ y‖α).

Choosing a “ Aα,dpRq minimizes W ÞÑ supxPBRpoq VarpW pxqq
among Gaussian representations for γ if and only if d “ 1 and α ď 1.
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Example

Original fBM
(α “ 0.7)
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(α “ 0.7)

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

Reduced variance.

Locally stationary fBM
(α “ 0.7)
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Minimal variance.
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α “ 0.7 α “ 1.0 α “ 1.3
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Figure : (above) Variances σ2
ptq of the Gaussian representations of the variogram

γphq “ |h{s|α on the domain K “ r´1, 1s. The plots show the variance for the original
representation with W0p0q “ 0 (black), the minimal K -stationary representation (red) and the
λ-modified representation with λ “ UnifpExpKqq (blue). For α “ 1 the last two coincide. The
scale s ą 0 is chosen such that the variance of the minimal K -stationary representation (red) is
normalized to 1.

Figure : (next page) Variances σ2
ptq of the Gaussian representations of the variogram

γphq “ ‖h{
?
2‖α on the domain K “ r´1, 1s2 for α P t0.7, 1.0, 1.3u (left to right). The plots

show the variance for the original representation with W0p0q “ 0, the minimal K -stationary
representation and the λ-modified representation with λ “ UnifpExpKqq (top to bottom).
Minimality of the K -stationary representation refers to the minimal ball B?

2p0q containing K .
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Quick wrap up.

several situations in which we understand
how to reduce the maximal variance a of Gaussian processes
(subject to fixed variogram)

How can this be useful for BR-simulation?

helps to pick a (log-)Gaussian spectral representation whose
supremum over the simulation window has a lighter tail
which reduces either the error or simulation time
(when simulation is based on threshold stopping)

To what extent?
Comparison with existing methods?

24 / 31



Quick wrap up.

several situations in which we understand
how to reduce the maximal variance a of Gaussian processes
(subject to fixed variogram)

How can this be useful for BR-simulation?

helps to pick a (log-)Gaussian spectral representation whose
supremum over the simulation window has a lighter tail
which reduces either the error or simulation time
(when simulation is based on threshold stopping)

To what extent?
Comparison with existing methods?

24 / 31



Quick wrap up.

several situations in which we understand
how to reduce the maximal variance a of Gaussian processes
(subject to fixed variogram)

How can this be useful for BR-simulation?

helps to pick a (log-)Gaussian spectral representation whose
supremum over the simulation window has a lighter tail
which reduces either the error or simulation time
(when simulation is based on threshold stopping)

To what extent?
Comparison with existing methods?

24 / 31



What can go wrong? (Typical phenomena)

Original definition
(Threshold stopping)
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Pointwise boxplots of 10000 simulations, Gumbel scale,
each stopped “too early”.
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What can go wrong? (Typical phenomena)

Random shift
(Threshold stopping)
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What can go wrong? (Typical phenomena)

Reduced/Minimal variance
(Threshold stopping)
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What can go wrong? (Typical phenomena)

Extremal functions
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Numerical experiments

Fair comparison?

Tradeoff

Efficiency Accuracy
Time = Expected number
of Gaussian processes
to be simulated

Error = Expected number
of missing extremal
functions

Fix time. Observe error.
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Numerical results (dimension 1)

Table : Benchmark error terms pPK ,τ for the simulation of BR processes on the
interval K “ r´1, 1s (step size 0.004) for the variogram γphq “ |h{s|α.

Original K- λ “ UnifpExpKqq Extremal
Scenario definition stationary modification functions

Sc
al
e
1 α “ 0.7 0.33 0.07 0.17 0.77

α “ 1.0 0.21 0.08 0.09 0.55
α “ 1.3 0.09 0.32 0.03 0.32

Sc
al
e
2 α “ 0.7 0.76 0.33 0.55 0.85

α “ 1.0 0.51 0.31 0.29 0.64
α “ 1.3 0.26 0.31 0.13 0.37

Sc
al
e
3 α “ 0.7 0.97 0.84 0.96 0.81

α “ 1.0 0.90 0.79 0.81 0.70
α “ 1.3 0.76 0.72 0.46 0.42

Remark. “True” minimizing measure for α ă 1 of discrete problem available. Even better.

Ongoing: comparison with Dieker-Mikosch and others. DM often extremely good.
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Discretization effects

Consider tx1, x2, . . . , xNu “ K Ă Rd (study area).

for convex variograms: nothing changes
(subtracting extremal points is optimal)
for concave variograms:

A) Still subtracting vertices with uniform weights helps.
Useful for α close to 1 for γphq “ ‖h{s‖α.

B) Usually possible to solve
ż

K
γpx ´ yqλ0pdyq “ 1, x P K .

If λ0 ě 0, then its normalization to a probability measure is λmin.
Useful for d “ 1 and α P p0, 1q or α close to 0.

C) Remaining cases.

min
λ

Nmax
i“1

1
2 pλ´ e i

q
T
p´Γ qpλ´ e i

q subject to eTλ “ 1, λ ě 0.

(Reformulations, augmented problem, dual problem, ...)
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Open problem

Let Γij “ ‖xi ´ xj‖α, i , j P t1, . . . ,Nu, tx1, . . . , xNu Ă Rd

Consider

λ “ Γ´1p1, 1, . . . , 1qT .

Conjecture 1.
For d “ 1 and α P p0, 1s we have λ ě 0.

Conjecture 2.
For d ą 2 there exists αcritical “ αcriticalpx1, . . . , xNq P p0, 1q
such that λ ě 0 for α ď αcritical.
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Summary

Brown-Resnick processes = popular model for spatial extremes.

Several simulation algorithms are suitable for exact simulation.
Once, an error is allowed/necessary: not so clear.
Our focus: Role of simulation domain K .
Very simple trick to reduce/minimize the maximal variance
of Gaussian spectral functions:

Subtract corners of simulation window with equal weights.
. . . always outperforms “original definition”,
comparison with “extremal functions”: depends on the scenario.
Often worthwile doing: Solve discrete optimization problem first.
(Associated open problems for γphq “ |h|α, α P p0, 1q)
Ongoing: Comparison with other normalizations (can perform very
well).
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Numerical experiments

Setting.

Variogram γpxq “ |x |α

Simulation domain K “ r´5, 5s
Step size 0.02
Threshold for “Reduced variance”: τ “ expp2

a

5α{2q

Error = Expected # of missing extremal functions
(based on 25 000 simulations)

Threshold stopping Extremal
Original defn. Random shift Reduced variance functions

α “ 0.7 1.11 1.35 0.70 3.03
α “ 1.0 0.97 1.22 0.61 1.24
α “ 1.3 0.95 1.08 0.63 0.27
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Boxplots α “ 1.3
Original defn
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Numerical results (dimension 2)

Table : Benchmark error terms pPK ,τ for the simulation of BR processes on the
square K “ r´1, 1s2 for the variogram γphq “ p2

?
2{πq‖h‖.

Original K- λ “ UnifpExpKqq Extremal
Scenario definition stationary modification functions

σ2
LS “ 1, α “ 1.0 0.07 0.09 0.01 0.73
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