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Introduction: Random functions with long memory

Random function = Set of random variables indexed by t € T.

Let X = {X;,t € T} be a wide sense stationary random function
defined on an abstract probability space (2, F, P), e.g.,

T C RY d > 1. The property of long range dependence (LRD)
can be defined as

/ C(1)] dt = +o0
;

where C(t) = cov(Xp, Xt), t € T (McLeod, Hipel (1978); Parzen
(1981)). Sometimes one requires that C < RV(—a), i.e.,
Jda € (0, d) such that

L(t
c(t) = |f|) ] = +oo,

where L(-) is a slowly varying function.
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Various approaches to define LRD

» Unbounded spectral density at zero.

» Growth order of sums’ variance going to infinity.

» Phase transition in certain parameters of the field (stability
index, Hurst index, heaviness of the tails, etc.) regarding
the different limiting behaviour of some statistics such as

» Partial sums
» Partial maxima.

These approaches are not equivalent, often statistically not
tractable and tailored for a particular class of random functions
(e.g., time series, square integrable, stable, etc.)
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Various approaches to define LRD

LRD for heavy tailed random fields:

» Phase transitions in the limiting behaviour of partial sums
and maxima of inf. divisible random processes and their
ergodic properties (Samorodnitsky 2004, Samorodnitsky &
Roy 2008, Roy 2010).

» a-spectiral covariance approach for linear random fields
with innovations lying in the domain of attraction of
a—stable law (Paulauskas (2016), Damarackas,
Paulauskas (2017))
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LRD: Infinite variance case

For a stationary random function X with E X? = +oc introduce
covx(t,u,v) =cov(1(Xp > u),1(X; > v)), teT,x,veR.

It is always defined as the indicators involved are bounded
functions.
A random function X is called LRD (SRD, resp.) if

//|covx(t, u,v)|dudvdt =+ (< +00).
T R2

For discrete parameter random fields (say, if T C Z9), the J7 dt
in the above line should be replaced by a . 7.1 4o-
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Motivation

Assume that X is wide sense stationary with covariance
function C(t) = cov(Xyp, X;), t € T, and moreover,

covx(t,u,v) >0or <OQOforallte T, uveR.

Examples of X with this property are all PA or NA- random
functions. W. Hoeffding (1940) proved that

clt) = /‘covx(t, U, v) du dv. (1)

02

Then, X is long range dependent if

/|C(t)|dt://|covx(t, U, v)| dudv dt = +oo.
J

T R2
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Motivation: Checking LRD

Level (excursion) sets and their volumes:
Let an(u) = vgq (Au (X, Wh)) be the volume of the excursion set
Au(X, Wn) == {te TN Wn . Xt > U}

of a random field X at level u in an observation window
W, = n- W where W c R% is a convex body.
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Motivation: Checking LRD

Multivariate CLT for level sets’ volumes (Bulinski, S.,
Timmermann, Karcher, 2012):

For a stationary centered weakly dependent random field X
satisfying some additional conditions (square integrable, a- or
max-stable, inf. divisible) we have for any levels u, v € R that

(@n(1), an(v)) " = (P(Xo = ), P(Xo > V)" - vg(Wh)

d
O = N(0,%)

asn— oo. Here ¥ = (aij),?j:1 with o2 = [a cOvx(t, u, v) dt.

So, ay(u) = vy (A, (X, W,)) is the right statistic to study!
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Motivation: Checking LRD

The new definition is statistically feasible and easy to check.
Notice that

// |covx(t, u,v)|dudv dt =

T R2

//|Fxo,x,(u, V) — Fx(u)Fx(v)| dudv at.
T R2
where the bivariate d.f. Fx, x,(u,v) =P(Xo < u, X; < v) and

marginal d.f. Fx(u) = P(Xp < u) can be estimated from the
data by their empirical counterparts.
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Motivation: Checking LRD

For a stationary centered Gaussian random field X with
Var Xp = 1 and correlation function p(t) we have (Bulinski, S.,
Timmermann, 2012)

, 1o u? —2ruv + v2 4
covx(,u,v)—g0 ﬁexp - 2112 r.
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V-Mixing

Let (2,.A, P) be a probability space and (¢, V) be two
sub-c—algebras of A. W—mixing coefficient:

PUNV) |
PV | VW P70, Ve P(V)aéO}.

v(U,V) = sup{‘1 —
Let X = {X;,t € T} be arandom function, and T be a normed
space with distance d. Let Xo = {X;,t € C}, C C T, and ¢ be
the o—algebra generated by X¢. If |C| is the cardinality of C for
C finite set

Wik u.v) = sup{W(Xa, Xs) :  d(AB) >k, |A < u,|Bl < v},

where u, v € N and d(A, B) is the distance between subsets A
and B.
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Subordinated non—Gaussian random functions: SRD and mixing

Theorem (Kulik, S. 2017)

Let process Y = {Y;,t € T} be a stationary process with
V—mixing rate satisfying [ Wy (||t||,1,1) dt < +oc. Let

Xt =9g(|Yi|),t € T, where g: Ry — R, withE Xy < +00. Then
X is SRD with

/T/R? |covx(t, u,v)|dudvdf < /T\Uy(HtH,1,1)dt-(EX0)2 < +400.
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Random volatility functions

Let the random field X = {X;, t € T} be given by
Xi = F(Y1)Z

where Y ={Y;,t€ T} and Z = {Z;, t € T} are independent
stationary random fields, Z has property

covz(t,u,v) >0o0r <Oforallte T, u,veR,

F:R—Ryand P(F(Y;)=0)=0forallteT.

F(Y}) is called a random volatility (being a deterministic
function of a random (often LRD) field Y = {Y;,t € T}) scaling
a heavy tailed random field Z = {Z;, t € T}.
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Random volatility functions

Theorem (Kulik, S. 2017)
A random volatility model X = {X;,t € T} is LRD if one of the
following holds:

(i) Y is a white noise, [ |covz(t,u,v)|dudv > 0 for a set of
R2
t € T with positive Lebesgue measure and either
E|F(Yo)| = +o0 or E|F(Yp)| € (0, +00), Z LRD.
(i) [ [ cov(Fz(u/F(Ys)),Fz(v/F(Y1)) dudv dt = +too.
T R2
(i) E(F(Yo)F(Yt)) =400, [ |covz(t,u,v)|dudv > 0 for a set
2

R
of t € T with positive Lebesgue measure and
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Random volatility functions

Theorem (Continuation)

(iii)
//cov(I_-'Z(u/F(Yo)),I_-'Z(V/F(Yt))) dudv dt > —oo(< +0).
T R2

(iv) E(F(Yo)F(Yt)) < 4oo forallt € T and the above holds
together with

/E(F(YO)F(Yt))/covZ(t, u,v)duadvdt = +oc.
T R2

In all above equations, + is taken with the same sign as
covz(t,u,v).
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Random volatility functions

Corollary
For the random field X with X; = AZ;, t € T assume that A > 0
a.s., A and Z are independent and Z is stationary. Then X is
LRD if one of the following holds:
1. Z is a white noise and
Jwecov (Fz(u/A), Fz(v/A)) dudv # 0.
2. Z € PA(NA) is not a white noise, Zy is symmetric, and
EA? = 4.
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Random volatility functions

Examples

» In Case 1) of the above corollary, it holds

/ cov (2 (u/A), Fz(v/A)) dudy = +oc

R2

if e.g. Zp ~ Exp()), A ~ Frechet(1) for any A > 0.

» Case 2) of the above corollary clearly applies to a
subgaussian random function X where A = v/B,
B~ S, ((cos%)z/a,to), ac(0,2),and Zis a
centered stationary Gaussian random field with covariance
function C(t) > 0(< 0) for all t € T. Here Z does not need
to be LRD but there should exist t # 0 such that C(t) # 0.
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LT for the volume of excursion sets

Let X be a measurable real-valued random field on R9, d > 1
and let W c RY be a measurable subset. Let

As(X, W) ={te W:X(t) > u}
be the excursion set of X in W over the level u € R.

Asymptotic (non)Gaussian behavior of vy (A, (X, W)) as W
expands to R9?

Prove a more general limit theorem for integrals [, g(X;) dt of
functionals g of X!



Seite 20 Long range dependence for random functions with infinite variance Evgeny Spodarev | 20. 06. 2018

LT for the volume of excursion sets

Let X be a random volatility field of the form
X =G(Y)Z, teT=RY

where
» {G(Y:),t € T} is asubordinated Gaussian random field,
» {Z,t € T} is a white noise,
» the random fields Y and Z are independent.

Let W,=n-W, W e K9, vg(W) >0, 0ec W, and g be a real
valued function such that E[g(Xo)] =0, E[g?(Xp)] > 0.
Introduce the function

§(y) = Elg(G(y)4)] -

It follows that {(y) < oo for v1—a. e. y € R, E[{(Yp)] = 0.
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LT for the volume of excursion sets

Furthermore, set

m(y.Z:) = g(G)Z) — £(y) . x(y) = E[mP(y. %)] .

Assume that

> rank (€) = g, E[|g(X0)[?] < o0, E[x*(Y0)] < 00 .

» Y is a homogeneous isotropic centered Gaussian random
field with the covariance function
p(t) = E[YoYi]l = [t|7L(|t]). n € (0, d/q) and L is slowly
varying at infinity,

» Y has a spectral density f(\) which is continuous for all
A # 0 and decreasing in a neighborhood of 0.
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LT for the volume of excursion sets
Theorem (Kulik, S. 2017)

1. If¢(y) = 0 then
n_d/z/ g(X) dt < N(0,0%), n—+oo,  (2)
Wh

where o2 = E[g?(Xo)]vg(W) > 0.
2. If&(y) # 0 then

nan/2-d 1 ~a/2(p) / 9X)at LR, no 400, (3)
Wh

where the random variable R is a q-Rosenblatt-type
random variable.



Seite 23 Long range dependence for random functions with infinite variance Evgeny Spodarev | 20. 06. 2018

LT for the volume of excursion sets

g—Rosenblatt-type random variable:
B(dA1)...B(d)\q)

/
R=((d)?2 [ [ goriadiay M)
rr Jw (IA] - [Agh @72

r((d—mn)/2)
y(d,n) = 2’777"/2—I'1(777/2)’

and fﬁ’w is the multiple Wiener—lto integral with respect to a
complex Gaussian white noise measure B (with structural
measure being the spectral measure of Y).
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LT for the volume of excursion sets

Example
Assume that

9(y) =1{y > u} - P(G(Yo)Z > u)
where G is nonnegative or nonpositive vy1—a.e. Then
§(y) = E[l{G(y)4 > u}] = P(G(Y0)Zo > u).

» If u=0then {(y) =0, so the Gaussian case applies.

» If u# 0then {(y) # 0, so the non-Gaussian case applies.
Let uG(y) > 0 for all y.
g =1: G: R — R4 is monotone right-continuous
non—constant fct. with 4 ({x € R: G(x) = 0}) = 0.
q = 2: G(y) = Gi(ly]) with Gy as above.
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LT for the volume of excursion sets

Example
Let the random volatility field X; = G(|Y;|)Z, t € RY be s.t.
» Y is a centered Gaussian random field with unit variance

and corr. function p(t) > 0 as above, p(t) ~ |t|7" as
[t| — 400

» G(x) > 0 is continuous as above with E |G(Y,)|'™ < o for
some # € (0,1).

» {Z;} is a heavy—tailed white noise, F7 is continuous,
E|Z| < 400, EZy # 0, EZZ = 4.
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LT for the volume of excursion sets

For G(y) = G(|y|), It holds

o~ (GHOZ [
//covx(t, u,v)dudvdt = (EZ) Zkl/ ok (t) dt.
R R2 k=1 ' "

> Since rank (G) = 2, Xis L.r.d. if [p4 p?(t) dt = +o0, that is, if
n € (0,d/2).

» For niveau u # 0, the asymptotic behavior of the volume of
the level sets A, (X, W,) is of 2-Rosenblatt-type
(rank (§) = q=2)if < (0.d/2).
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LT for the volume of excursion sets

Summary:
The correct statistics associated with the new definition of l.r.d.
is the volume of excursion sets!!!!
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Open problems

» Checking the new LRD definition for other classes of
processes and fields with infinite variance

» Connection of LRD with LT for the volume of excursions of
other stationary random fields
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