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Iterated random functions
I Let fn, n ≥ 1, be i.i.d. random Lipschitz functions on a

Polish space.
I Let L denote the (random) Lipschitz constant of a

generic function f .
I Forward iterations

ξn = fn(fn−1(· · · f1(z0) · · · )), n ≥ 1,

build a Markov chain.
I Backward iterations

ξn = f1(f2(· · · fn(z0) · · · )), n ≥ 1,

converge almost surely if EL <∞, E log L < 0, and

Eρ(f (z0), z0) <∞

for some z0, see Diaconis & Freedman (1999).
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Sieving the functions

I Leave some functions out.
I Let {(ti , xi , fi), i ≥ 1} be a Poisson process on

R+ × R+ of intensity dt ⊗ µ, independently marked by
i.i.d. random Lipschitz functions.

I Consider {(tik , xik , fik ) : k ≥ 1, xik ∈ A} and fix z0.
I The backward iterations restricted to xi ∈ A

ζn(A) = fi1(· · · fin(z0) · · · )→ ζ(A)

a.s. as n→∞.
I ζ(A) is a random set-function, often A = [0, x ].
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Leaving some functions out
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Properties of the limit

I The distribution of ζ(A) does not depend on A if
µ(A) ∈ (0,∞).

I The values of ζ on disjoint sets are independent.
I The process ζx = ζ([0, x ]), x > 0, is scale invariant;

the same holds for ζ(A) as function of A, that is,

(ζ(A1), . . . , ζ(Am))
d∼ (ζ(cA1), . . . , ζ(cAm))

for all c > 0.
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Continuity properties
Theorem

I If An ↑ A, then ζ(An)→ ζ(A) a.s.
I If An ↓ A, then ζ(An)→ ζ(A) a.s.

Proof.
Let (tik , xik ) are such that xik ∈ A, and let

Nn = inf{k : xik /∈ An}.

Then

ζ(An) = fi1 ◦ · · · ◦ fiNn−1(zn)

ζ(A) = fi1 ◦ · · · ◦ fiNn−1(z ′n).

Note that Nn ↑ ∞.
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Scale-invariant process

Theorem
The process ζx = ζ([0, x ]) is continuous at any fixed x, is
càdlàg and not pathwise continuous.

Proof.
If xn ↓ x and x ′n ↑ x , then ζ([0, xn]) ↓ ζ([0, x ]) and
ζ([0, x ′n]) ↑ ζ([0, x)) = ζ([0, x ]) a.s.
Discontinuous at the point xi with the smallest ti .
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Decomposition by the first entry point

I Consider two sets A1 and A2.
I Let (t∗, x∗, f∗) be such that t∗ is the smallest for all

xi ∈ (A1 ∪ A2). Then

(ζ(A1), ζ(A2))
d∼ (f∗(ζ(A1)), f∗(ζ(A2)))1{x∗∈A1∩A2}

+ (ζ(A1), f∗(ζ(A2)))1{x∗∈A2\A1}

+ (f∗(ζ(A1)), ζ(A2))1{x∗∈A1\A2}.

I If A1 = [0, x ] and A2 = [0, y ] with y ≥ x , then

yE(ζxζy ) = xE(f (ζx )f (ζy )) + (y − x)E(ζx f (ζy )).

where ζx = ζ([0, x ]) and ζy = ζ([0, y ]).
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Finite interval
I Assume x ∈ [0,1] and consider

f1(f2(f3(· · · )))

I Let {Un,n ≥} be i.i.d. uniform. For each x ∈ (0,1],
leave in the iteration the functions with Ui ≤ x .

I The process ζx , x ∈ (0,1], satisfies

ζx
d∼ (f (ζx )1{U≤x} + ζx1{U>x}), x ∈ (0,1].

I Equivalently, possible to modify the iteration as

ζx
d∼

{
f (ζx ) if x ≤ U
ζx oherwise

being an iteration that acts on functions.
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Example: perpetuities

I Let f (z) = Mz + Q.
I Converges if E log |M| ∈ (−∞,0) and E log+ |Q| <∞,

see Goldie & Maller (2000).
I Assume E|M| < 1. Then ζx = ζ([0, x ]) satisfies

Eζx =
EQ

1− EM
, E(ζxζy ) =

xEQ2

(1− EM)y + (EM − EM2)x

I Thus, ζ̃s = ζ([0,es]), s ∈ R, is a stationary process
with the covariance

E(ζ̃sζ̃0) =
a

ce|s| + 1
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Bernoulli convolutions
I Consider f (z) = 1

2z + Q, where Q equally likely takes
values ±1.

I Then ζx is uniformly distributed on [−2,2] for all x ,
and

E(ζxζy ) =
4x

2y + x
, E(ζ̃sζ̃0) =

4
2e|s| + 1

.

I The joint distributions are of the fractal type, e.g.
(ζ0.7, ζ1)
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Gaussian additive term
I Consider f (z) = λz + Q with deterministic λ and

Gaussian Q.
I Then ζx is Gaussian for all x .
I The covariance are similar to the case of Bernoulli

convolutions.
I The joint distributions are not Gaussian, e.g. (ζ0.7, ζ1),
λ = 1/2:
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Leaving some functions out
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Interpretation in terms of empirical cdf

I Consider f (z) = λz + Q.
I Then

ζx =
∞∑

n=1

λ
1{U1≤x}+···+1{Un−1≤x}Qn1{Un≤x}

=
∞∑

n=1

λ(n−1)F̂n−1(x)Qn1{Un≤x},
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Self-decomposability
I If {Γi , i ≥ 1} is Poisson process on (0,∞), and {εi}

are i.i.d., then
ζ =

∑
i

e−Γiεi

is self-decomposable.
I It appears from iterating f (z) = Mz + ε for the

uniformly distributed M, so that M = e−ξ.
I After sieving, on [0,1],

ζx =
∑

i

e−ξ11U1≤x−···−ξi 1Ui≤xεi+11Ui+1≤x =

∫ ∞
0

e−tdLx (t),

where, for every fixed x ∈ (0,1], Lx : R+ → R is a
Lévy process.
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Construction of processes by iterations

The sieving machinery can be applied to any iterative
scheme that almost surely converges, so for backwards

iterations.

f1(f2(f3(· · · (z0) · · · )))
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Example: numerical continued fractions

I Let f (z) = 1/(z + ξ), z > 0, where ξ is Gamma
distributed.

I We obtain a continued fraction.
I Then ζx has the inverse Gaussian distribution for

each x > 0, see Letac & Seshadri (1983).
I Generalisation: products of random matrices.
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Continued fractions with the Gamma process
I Let ξt , t ≥ 0, be the Gamma process, and let ξ(i)

t be
its independent copies.

I Construct continued fraction

ζt =
1

ξ
(1)
t + 1

ξ
(2)
t + 1

ξ
(3)
t +···

Then ζt has inverse Gaussian distribution for each
t > 0 (with parameter depending on t), but no
independent increments.

I Joint distributions{
1
ζt

d∼ ζt + ξt

1
ζt+s

d∼ ζt+s + ξt + γ

where γ = ξt+s − ξt .
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Iterating Poisson processes

I Let Nt , t ≥ 0, be the Poisson process.
I Then

ζt =
1

N(1)
t + 1

N(2)
t + 1

N(3)
t +···

is a Markov process.
I Reason: from the value of ζt it is possible to recover

all N(i)
t .
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Min-max

I Let f (z) = min(z, ξ) or f (z) = max(z, ξ) with some
probabilities and a random variable ξ.

I Was discussed in 2012 with Bernardo D’Auria and
Sid Resnick.

I However f has the Lipschitz constant L = 1; this does
not suffice for the a.s. convergence of the backward
iterations

I One has the convergence in distribution for forward
iterations.
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Sieving forward iterations

I The same sieving idea can be applied to forward
iterations.

I Recursion: if A1 ⊂ A2, then

(ζ(A1), ζ(A2))
d∼

{
(f (ζ(A1)), f (ζ(A2))), x ∈ A1,

(ζ(A1), f (ζ(A2))), x ∈ A2 \ A1.
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Distributions of random sets

I There is a shortage of distributions of random sets.
I One can try to obtain new distributions by applying

iterative schemes.
I There are natural scale-invariant random closed sets,

e.g. {t : wt = 0} – zero set of the Wiener process.
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Random fractals
I Iterated function system: S1, . . . ,Sk , and

K =
k⋃

i=1

Si(K ).

I For example, the Cantor set appears if S1(z) = z/3
and S2(z) = (z + 2)/3.

I Let f (·) be the Lipschitz map on the space of compact
sets, such that f (K ) is S1(K ), S2(K ), or
S1(K ) ∪ S2(K ) with equal probabilities.

I The limit is a random fractal set, where at each step,
one deletes the mid third, the first two-third or the last
two-third with equal probabilities.

I Sieving produces a set-valued process of this type.
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Set-valued perpetuities

I Let
f (Z ) = MZ + Q,

where M > 0, and Z ,Q are convex bodies.
I The limit provides a set-valued process with

self-decomposable (for Minkowski sums) univariate
distributions.

I Set-valued autoregression:

Xn = e−βnXn−1 + Qn, n ≥ 1.
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Set-valued continued fractions
I Let X0 be any random (or deterministic) convex body.
I Let Yn, n ≥ 1, be a sequence of i.i.d. random convex

bodies distributed as Y .
I Define

Xn+1 = (Xn + Yn+1)o,

where
K o = {u : hK (u) ≤ 1}

is the polar body to K .
I If Yn = [0, ξn] in R, one obtains conventional

continued fractions.
1

Y3 + 1
Y2+ 1

Y1

cf
1

Y1 + 1
Y2+ 1

Y3

I Deterministic set-valued continued fractions:
IM (2016).
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Almost sure convergence: backward
iterations

Theorem (IM 2016)
ρH(K o,Lo) ≤ max(‖K o‖, ‖Lo‖)2ρH(K ,L).

Theorem
Assume that Y ⊃ Bζ with ζ > 0 a.s. and

Eζ−2 <∞, E log ζ > 0.

Then the backwards iterations converge almost surely.
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Convergence in distribution: forward
iterations

I The Markov chain Xn, n ≥ 0, is obtained by iteration
of monotone transformations.

Theorem
Assume that Xn is a.s. compact, contains a
neighbourhood of the origin for all sufficiently large n, and

δ1 = P{X2k−1 ⊂ rB} > 0

for some r < 1 and k ≥ 1 and that

δ2 = P{Y1 ⊂ (r−1 − r)B} > 0 .

Then Xn converges in distribution to a random convex
body X which a.s. contains a neighbourhood of the origin
and satisfies X o d∼ X + Y.
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Example

I Y1 a.s. contains a neighbourhood of the origin, and

P{Y1 ⊃ rB} > 0,

P{Y1 ⊂ (r − r−1)B} > 0

for some r > 1.
I Y1,Y2, . . . are i.i.d. segments in the plane such that

Y1 + Y2 a.s. contains a neighbourhood of the origin.
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