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lterated random functions

» Let f,, n > 1, bei.i.d. random Lipschitz functions on a
Polish space.

» Let L denote the (random) Lipschitz constant of a
generic function f.

» Forward iterations

gn:fn(fn—1("‘f1(zo)"'))> n21,

build a Markov chain.
» Backward iterations

&= h(h(-- fa(20)--+)), n=1,
converge almost surely if EL < oo, Elog L < 0, and
En(f(z0), 20) < o0

for some z,, see Diaconis & Freedman (1999).



Sieving the functions

Leave some functions out.

Let {(#, x;, f;),i > 1} be a Poisson process on

R, x R, of intensity dt ® u, independently marked by
i.i.d. random Lipschitz functions.

Consider {(t;, x;, f,) : kK >1,x; € A} and fix z,.
The backward iterations restricted to x; € A

C(A) = £, (- (20) - --) = C(A)

a.s. as n — .
» ((A) is a random set-function, often A = [0, x].
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Properties of the limit

» The distribution of ((A) does not depend on A if
1(A) € (0, 00).
» The values of ¢ on disjoint sets are independent.

» The process (¢, = (([0, x]), x > 0, is scale invariant;
the same holds for ((A) as function of A, that is,

(C(A), -, C(Am) L (C(CAY), ..., C(CAm))

forall ¢ > 0.



Continuity properties
Theorem
» IfA, T A, then ((A,) — ((A) a.s.
» IfA, | A, then ((A,) — ((A) a.s.

Proof.
Let (%, x; ) are such that x; € A, and let

N, = inf{k : x; ¢ An}.

Then

Note that N, T oo.



Scale-invariant process

Theorem

The process (x = (([0, x]) is continuous at any fixed x, is
cadlag and not pathwise continuous.

Proof.
If x, | x and x, 1 x, then ¢([0, x,]) { ¢([0, x]) and
¢([0, x;]) 1 ¢([0, x)) = ¢([0, x]) as.

Discontinuous at the point x; with the smallest t;. O






Decomposition by the first entry point

» Consider two sets A; and A.

» Let (L., x., f.) be such that t, is the smallest for all
€ (A1 U A2) Then

(C(A1), C(A2)) ~ (£(C(A1)), £(C(A)))T xcainaz

d
+ (C(A1), L(C(A))) T x.enn\an
+ (£(C(A1)): C(A2))1 (x.canAn)-

» If Ay =[0,x] and A, = [0, y] with y > x, then

YE(GGy) = XE(F(G)F(Cy)) + (v = X)E(GA(Gy))-
where ¢, = ¢([0, x]) and ¢, = ¢([0, y]).



Finite interval
» Assume x € [0, 1] and consider
fi(f((---)))

» Let {U,, n >} bei.i.d. uniform. For each x € (0,1],
leave in the iteration the functions with U; < x.

» The process (y, x € (0, 1], satisfies

G 2 (G usn + Ghusa), X € (0,1].

» Equivalently, possible to modify the iteration as

¢ g{f(CX) if x<U

(x oherwise

being an iteration that acts on functions.



Example: perpetuities

» Let f(2) = Mz + Q.

» Converges if Elog |[M| € (—o0,0) and Elog™ |Q| < oo,
see Goldie & Maller (2000).

» Assume E|M| < 1. Then (, = (([0, x]) satisfies

EQ xEQ?

Fo=mem BOY) = T Emy - (M EMR)x
» Thus, (s = ¢([0, €°]), s € R, is a stationary process
with the covariance

ECO) = g



Bernoulli convolutions
» Consider f(z) = 1z + Q, where Q equally likely takes

values +1.
» Then (, is uniformly distributed on [—2, 2] for all x,
and
4x o 4
E(CXC}’) - 2y+ X? (CSCO) - 2e|s| T 1 .

» The joint distributions are of the fractal type, e.g.

(CO.?; C1)
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Gaussian additive term

» Consider f(z) = Az + Q with deterministic A and
Gaussian Q.

» Then (, is Gaussian for all x.

» The covariance are similar to the case of Bernoulli
convolutions.

» The joint distributions are not Gaussian, e.g. (¢o.7, (1),
A=1/2:

xxxxx



Leaving some functions out
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Interpretation in terms of empirical cdf

» Consider f(z) = Az + Q.
» Then

o0
1 et
(x = E A U<t < Qnliu,<x)

n=1

- Z A(=1)Fa1(x) Qo1 U,y

n=1



Self-decomposability

» If {I';,i > 1} is Poisson process on (0, o), and {¢;}
are i.i.d., then
(= Z e e
i

is self-decomposable.

» It appears from iterating f(z) = Mz + ¢ for the
uniformly distributed M, so that M = e~~.

» After sieving, on [0, 1],
—£&41 x— " — ,'1 <X~ — = —t
(x = Z e Sly< &ilu,< €,+11U,+1§X = /O e dLX(f),

where, for every fixed x € (0,1], Ly : R, - Risa
Lévy process.



Construction of processes by iterations

The sieving machinery can be applied to any iterative
scheme that almost surely converges, so for backwards
iterations.

fi(fa((---(20)---)))



Example: numerical continued fractions

v

Let f(z) =1/(z+ &), z > 0, where ¢ is Gamma
distributed.

We obtain a continued fraction.

Then (, has the inverse Gaussian distribution for
each x > 0, see Letac & Seshadri (1983).

Generalisation: products of random matrices.
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Continued fractions with the Gamma process

» Let &, t > 0, be the Gamma process, and let 5;') be
its independent copies.
» Construct continued fraction

1
G =
§1) + 1
5t (3)

Then (; has inverse Gaussian distribution for each
t > 0 (with parameter depending on t), but no
independent increments.

» Joint distributions

d
{1 G+ &
e L s+ &+

where 7 = s — &



lterating Poisson processes

» Let N;, t > 0, be the Poisson process.

» Then
y

Y 1
N+ Jer—
BRI

Gt

is a Markov process.
» Reason: from the value of ¢; it is possible to recover
all N

20



Min-max

» Let f(z) = min(z,&) or f(z) = max(z, £) with some
probabilities and a random variable &.

» Was discussed in 2012 with Bernardo D’Auria and
Sid Resnick.

» However f has the Lipschitz constant L = 1; this does
not suffice for the a.s. convergence of the backward
iterations

» One has the convergence in distribution for forward
iterations.
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Sieving forward iterations

» The same sieving idea can be applied to forward
iterations.

» Recursion: if Ay C A, then

(C(A).C(Az)) 2 {E (
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Distributions of random sets

» There is a shortage of distributions of random sets.

» One can try to obtain new distributions by applying
iterative schemes.

» There are natural scale-invariant random closed sets,
e.g. {t: w; =0} — zero set of the Wiener process.

bk}



Random fractals
» lterated function system: S;, ..., Sk, and

» For example, the Cantor set appears if Si(z) = z/3
and S;(z) = (z+2)/3.

» Let f(-) be the Lipschitz map on the space of compact
sets, such that /(K) is Si(K), Sz(K), or
Si(K) U Sy(K) with equal probabilities.

» The limit is a random fractal set, where at each step,
one deletes the mid third, the first two-third or the last
two-third with equal probabilities.

» Sieving produces a set-valued process of this type.
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Set-valued perpetuities

» Let
f(Z)=MZ+ Q,
where M > 0, and Z, Q are convex bodies.

» The limit provides a set-valued process with
self-decomposable (for Minkowski sums) univariate
distributions.

» Set-valued autoregression:

X, = e’ﬁ”X,H + Qn, n>1.
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Set-valued continued fractions

>

>

Let Xy be any random (or deterministic) convex body.
Let Y,, n > 1, be a sequence of i.i.d. random convex
bodies distributed as Y.
Define

Xov1 = (X + Yni1)°,

where
={u: hg(u) <1}
is the polar body to K.
If Y, =1[0,&]in R, one obtains conventional
continued fractions.
1 1

——— cf
Ya+ o+ Yi+ o+

Y+Y1 Y+Y3

Deterministic set-valued continued fractions:
IM (2016).
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Almost sure convergence: backward
iterations

Theorem (IM 2016)
pr(K°, L) < max([|K°|, [L°]])2pu(K. L).

Theorem
Assume that Y D B, with( > 0 a.s. and

E¢2<o00, Elog(¢>0.

Then the backwards iterations converge almost surely.
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Convergence in distribution: forward

iterations
» The Markov chain X,, n > 0, is obtained by iteration
of monotone transformations.

Theorem
Assume that X, is a.s. compact, contains a
neighbourhood of the origin for all sufficiently large n, and

0 = P{ng_1 C rB} >0
forsomer <1 and k > 1 and that
So=P{YyC(r'-r)B} >0.

Then X, converges in distribution to a random convex
body X which a.s. contains a neighbourhood of the origin

and satisfies X° 2 X + Y.
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Example

» Y; a.s. contains a neighbourhood of the origin, and

P{Y; D rB} > 0,
P{Y,c(r—-r"B}>0

for some r > 1.

» Yy, Yo, ... areii.d. segments in the plane such that
Y; + Y2 a.s. contains a neighbourhood of the origin.
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