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Random Partition: Infinite Urn Model
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Infinte urn model

(Yn)n>1 i.id. with values in N = {1,2,...}.
1 2 3 4 5

Y1=2,Y2=4Y3=2Y,=1Y5=100, Y6 =2, Y7=4, Y =5

— Random partition of {1,2,3,4,5,6,7,8} as {1,3,6}, {2,7}, {4}, {5}, {8}.
Bahadur (1960), Karlin (1968), Gnedin, Hansen & Pitman (2007)
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Let py =P(Y1 = k), k> 1.
Assumptions:
o (pk) is nonincreasing and py > 0 for all kK > 1.

o Regular variation: max{k > 1| px > 1/t} = tPL(t), for some B € (0,1) and L
slowly varying function.

Central Limit Theorem (Karlin, 1968)
For op = (I(1 — B)n® L(n))'/?,
Z(n) —EZ(n)
U(n) — EU(n)

On

= 1 N(0,1)

= o N(0,1)

where ¢ = (27 —1)Y/2 and ¢y = 2771,
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(en)n>1 i.i.d. Rademacher random variables.

Randomized Occupancy Process (ROP): Z%(n) = Zagﬂ{Kn £>0}
>1

Randomized Odd-Occupancy Process (ROOP): U®(n ng]l{;(" odd }
£2>1
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Functional CLT (D., Wang, 2016)
For op = (I(1 — B)n® L(n))'/?,

€
{ Z:(lnt)) } = {B(tﬁ)} (time-changed Brownian motion)
On te[0,1] te[0,1]
€
{ Y(lnt)) } = c3 {IB’B/Z(L‘)} (fractional Brownian motion)
on t€[0,1] tc(0,1]

in D([0,1]).

Here cg = 28=1)/2,
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Theorem (D., Samorodnitsky, Wang)
For by = (T(1 — B)n® L(n))¥/?,

{ZE(WJ)

b }te[o,l] = 0. {Za(tﬂ)}te[o,l] (time-changed SaS Lévy process)

in D([0,1]).

o0
Here 0 = CE/ x~%sin x dx.
0
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and N is a standard Poisson process defined on the probability space (Q, 7', P').
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Heavy-tailed randomization

Let
Uf(t) = / WL n(rt)(w’) odd } Ma, g (dr, dw’), >0,
R4 xQ/
where m,, 5 is a SaS random measure on Ry X Q' with control measure

F(1—B)"18r=f1dr x P'(dw’),
and N is a standard Poisson process defined on the probability space (Q, 7', P').

Theorem (D., Samorodnitsky, Wang)
For by = (T(1 = B)n’L(n))*/*,
M} f.dd. 0.8
{ bn te[0,1] o {U (t)}rem,ll'

If o < 1, then the convergence in distribution in D([0,1]) holds.
If « > 1, open question.

Properties : U*8 is B/ a-self-similar with non-ergodic stationary increments
(Samorodnitsky, 2005)
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Idea of the proof

Let d > 1and & € Ay = {0,1}7\ {(0,...,0)}.
Consider the multiparameter odd-occupancy process

MO (n) : ZH{K"k 8 mod 2} — ZH { Koyt mod 2} necN

k=1j=1

Then
fim M2(nt])
n—o00 nﬁL(n)

Moreover,

- / P (N(rt) — & mod 2) Br—f=ldr in probability.
0

M2 ([nt]) —EM?(|nt)) s
{ (nﬁL(n))l/2 }IG[O,I]d - {M (t)}tE[O,l]d

in D([0,1]%), where M? is a centered Gaussian random field with

COV(M5(t)7 M5(s)) = ‘/O Cov (Il{,—\;(rt):s mod 2} ]l{IV(rs):s od 2}) 5r_’8_1dr.
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Extremes and Random Sup-Measures
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Related models for extremes

Infinite urn model (Y;);>1 with positive heavy-tailed randomization (e )k>1-

Empirical random sup-measures on [0, 1]
Mq(A) = max X;, AC]0,1],
i/n€EA

with
X; = ey, (occupancy),
or X;=cey ik, odd} (odd-occupancy),

or X;=eylk , -1y (first-occupancy).

They all have the same associated extremal process

Ma(t) = Ma([0, t]) m?ﬁnq Xi, te]o,1].

=

In the sequel, X; = Ey;.
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Related models for extremes

Mn(-) = max X, for X; = ey, i > 1.

i/ne

Theorem (D., Wang)
For by = (C.I(1 — B)n® L(n))/*,
bl,,M" = Mq,3, as n — oo,

in SM([0,1]), where M, g is the Karlin random sup-measure on [0, 1]:
1
Ma,p(A) = sup —Tiw, (x )0y A C[0,1],
e>1T}

where {(T¢,x¢)}¢>1 is an enumeration of a Poisson process on Ry x Ry with intensity
dy x F(1—B8)"18x P ldx and {N¢}¢>1 are i.i.d. standard Poisson processes on R.



Related models for extremes

Mn(-) = max X, for X; = ey, i > 1.

i/ne

Theorem (D., Wang)
For by = (C.T(1 = B)n’ L(m)*/=,

1
b—"l\/l,, = Mq,3, as n — oo,
in SM([0,1]), where M, g is the Karlin random sup-measure on [0, 1]:
1
Map(A) == sup F}Wﬂ{we(xm)#o}’ AcC[o,1],

where {(T¢,x¢)}¢>1 is an enumeration of a Poisson process on Ry x Ry with intensity
dy x F(1—B8)"18x P ldx and {N¢}¢>1 are i.i.d. standard Poisson processes on R.

M g has been considered as example of Choquet-RSM in Molchanov & Strokorb
(2016).
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Karlin random sup-measure

For all z > 0,
65(A) .
P(Mqy,3(A) < z) =exp (_BZT) with  05(A) := Leb(A)P.
The function 0 is the extremal coefficient of M, g.
Another representation:

a,B(A)_Sup l/a {’R ﬂA#V)}’ AC[071]7

with (Rgﬂ))gzl i.i.d. random sets such that

P(R®) N A # 0) = Leb(A)”.

Remark: U{U}

with (U;) be i.i.d. uniformly dlstrlbuted over (0,1) and Qg an N-valued random
variable such that

k € N.

BA—-B)2—=B)---(k—1-B)

P(Qg = k) = oy
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Karlin Random Sup-Measure

The Karlin RSM can be compared with:

i 1
Mg () = sup o Muge -y (independently scattered RSM)
LeNT,

where (Uy) are i.i.d. uniformely distributed on [0, 1], or

1
sr .
M 5() = sup l/a {523)0_#0)} (stable-regenerative RSM)

where (Séﬁ)) are i.i.d. random closed sets of [0, 1], each consisting of a randomly
shifted [S-stable regenerative set. (Lacaux & Samorodnitsky, 2016)

The max-increment process {M((t, t + 1])}+cr of
MZ is mixing,
Mg,ﬂ is ergodic but not mixing,
M, g is not ergodic.
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Idea of the proof of the theorem

Foreach ne N, £ > 1, let
Roe:={ie{l,....,n}: Yi=1¢}
and consider the point process

&n =

O(cy Far)
£>1,K, (#0 \Bn’ 1

Theorem
For by = (C-I(1 — B)n° L(n))/*,

o0
En=> €= Zd(rfl/a R’ as n — oo,
=1 V¢ T

in M4 ((0,00) x F([0,1])).
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(€n,k)k=1,...,z(n) the order statistics of {e; : K, ¢ # 0} (assume no equalities),

£y k the index such that e, x = ¢; Y
n,

ﬁn’k:{ie{l,...,n} 2 Yi=dni}
Then

Z(n)
= ) = .
En Z Enk Rnk
k=1 by’ n
.. Rn,k . . . .
The joint convergence of the uses Poissonization technique.
n
Let N be a standard Poisson process on R, and 71, 72, ... its arrival times.
At time n:

R,,l:#{i : Y;=/¢and 77 < n} and z(n):#{é: R,,g;éO}

The order statistics of {eg : ng # 0} is (En(n),k)-
Let Zn,k the index s.t. e, x = €5 . and ﬁ,,’k ={rn<n:Y;= Zn,k}-

Then _
dy (:‘?,,7;(/n7 R,,,k/n) — 0, as n— oo.
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