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Infinte urn model

(Yn)n≥1 i.i.d. with values in N = {1, 2, . . .}.

1 2 3 4 5

Y1 = 2

Random partition of {1, . . . , 8} as {1, 3, 6}, {2, 7, }, {4}, {5}, {8}.

Bahadur (1960), Karlin (1968), Gnedin, Hansen & Pitman (2007)
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Infinte urn model

• Kn,` =
n∑

i=1

1l{Yi =`}.

• Occupancy process: Z(n) =
∑
`≥1

1l{Kn,`>0}.

• Odd-occupancy process: U(n) =
∑
`≥1

1l{Kn,` odd }.

1 2 3 4 5

Y1 = 2, Y2 = 4, Y3 = 2, Y4 = 1, Y5 = 100, Y6 = 2, Y7 = 4, Y8 = 5, ...

Z(n) U(n)

n n
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Infinte urn model

Let pk = P(Y1 = k), k ≥ 1.

Assumptions:

• (pk ) is nonincreasing and pk > 0 for all k ≥ 1.

• Regular variation: max{k ≥ 1 | pk ≥ 1/t} = tβL(t), for some β ∈ (0, 1) and L
slowly varying function.

Central Limit Theorem (Karlin, 1968)
For σn = (Γ(1− β)nβL(n))1/2,

Z(n)− EZ(n)

σn
⇒ c1N (0, 1)

U(n)− EU(n)

σn
⇒ c2N (0, 1)

where c1 = (2β − 1)1/2 and c2 = 2β−1.
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Randomization

(εn)n≥1 i.i.d. Rademacher random variables.

ε1 ε2 ε3 ε4 ε5

1 2 3 4 5

Randomized Occupancy Process (ROP): Zε(n) =
∑
`≥1

ε`1l{Kn,`>0}

Randomized Odd-Occupancy Process (ROOP): Uε(n) =
∑
`≥1

ε`1l{Kn,` odd }
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Correlated random walks

ROP: Zε(n) =
∑
`≥1

ε`1l{Kn,`>0} =
n∑

i=1

Xi with Xi = εYi
1l{Ki,Yi

=1}.

ROOP: Uε(n) =
∑
`≥1

ε`1l{Kn,` odd } =
n∑

i=1

Xi with Xi = εYi
(−1)Ki,Yi

+1.

Functional CLT (D., Wang, 2016)
For σn = (Γ(1− β)nβL(n))1/2,{

Zε(bntc)
σn

}
t∈[0,1]

⇒
{
B(tβ)

}
t∈[0,1]

(time-changed Brownian motion)

{
Uε(bntc)

σn

}
t∈[0,1]

⇒ cβ

{
Bβ/2(t)

}
t∈[0,1]

(fractional Brownian motion)

in D([0, 1]).

Here cβ = 2(β−1)/2.
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Heavy-tailed randomization

Assume (εn)n≥1 are symmetric i.i.d. random variables in the DoA of a symmetric
α-stable law, α ∈ (0, 2):

lim
x→∞

P(|ε1| > x)

x−α
= Cε ∈ (0,∞).

Theorem (D., Samorodnitsky, Wang)
For bn = (Γ(1− β)nβL(n))1/α,{

Zε(bntc)
bn

}
t∈[0,1]

⇒ σε
{
Zα(tβ)

}
t∈[0,1]

(time-changed SαS Lévy process)

in D([0, 1]).

Here σαε = Cε

∫ ∞
0

x−α sin x dx.
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Heavy-tailed randomization

Let

Uα,β(t) :=

∫
R+×Ω′

1l{N(rt)(ω′) odd }mα,β(dr , dω′), t ≥ 0,

where mα,β is a SαS random measure on R+ × Ω′ with control measure

Γ(1− β)−1βr−β−1dr × P′(dω′),

and N is a standard Poisson process defined on the probability space (Ω′,F ′,P′).

Theorem (D., Samorodnitsky, Wang)
For bn = (Γ(1− β)nβL(n))1/α,{

Uε(bntc)
bn

}
t∈[0,1]

f .d.d.→ σε
{
Uα,β(t)

}
t∈[0,1]

.

If α < 1, then the convergence in distribution in D([0, 1]) holds.

If α ≥ 1, open question.

Properties : Uα,β is β/α-self-similar with non-ergodic stationary increments
(Samorodnitsky, 2005)
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Idea of the proof

Let d ≥ 1 and δ ∈ Λd = {0, 1}d \ {(0, . . . , 0)}.
Consider the multiparameter odd-occupancy process

Mδ(n) :=
∞∑

k=1

1l{Kn,k =δ mod 2} =
∞∑

k=1

d∏
j=1

1l{
Knj ,k

=δj mod 2
}, n ∈ Nd .

Then

lim
n→∞

Mδ(bntc)
nβL(n)

=

∫ ∞
0

P
(
~N(rt) = δ mod 2

)
βr−β−1dr in probability.

Moreover, {
Mδ(bntc)− EMδ(bntc)

(nβL(n))1/2

}
t∈[0,1]d

⇒
{
Mδ(t)

}
t∈[0,1]d

in D([0, 1]d ), where Mδ is a centered Gaussian random field with

Cov(Mδ(t),Mδ(s)) =

∫ ∞
0

Cov
(
1l{~N(rt)=δ mod 2}, 1l{~N(rs)=δ mod 2}

)
βr−β−1dr .
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Mδ(bntc)− EMδ(bntc)

(nβL(n))1/2

}
t∈[0,1]d

⇒
{
Mδ(t)

}
t∈[0,1]d

in D([0, 1]d ), where Mδ is a centered Gaussian random field with

Cov(Mδ(t),Mδ(s)) =

∫ ∞
0

Cov
(
1l{~N(rt)=δ mod 2}, 1l{~N(rs)=δ mod 2}

)
βr−β−1dr .
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Random Partition: Infinite Urn Model

Randomized Karlin model

Heavy-Tailed Randomization

Extremes and Random Sup-Measures



Related models for extremes

Infinite urn model (Yi )i≥1 with positive heavy-tailed randomization (εk )k≥1.

Empirical random sup-measures on [0, 1]

Mn(A) = max
i/n∈A

Xi , A ⊂ [0, 1],

with

Xi = εYi
(occupancy),

or Xi = εYi
1l{Ki,Yi

odd } (odd-occupancy),

or Xi = εYi
1l{Ki,Yi

=1} (first-occupancy).

They all have the same associated extremal process

Mn(t) = Mn([0, t]) = max
i=1,...,bntc

Xi , t ∈ [0, 1].

In the sequel, Xi = εYi
.
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Related models for extremes

6

-
1 2 3 4 5 6 7 8

ε2 ε2 ε2

ε4 ε4

ε1

ε100

ε5

Y1 = 2, Y2 = 4, Y3 = 2, Y4 = 1, Y5 = 100, Y6 = 2, Y7 = 4, Y8 = 5, ...



Related models for extremes

Mn(·) = max
i/n∈ ·

Xi , for Xi = εYi
, i ≥ 1.

Theorem (D., Wang)
For bn = (CεΓ(1− β)nβL(n))1/α,

1

bn
Mn ⇒Mα,β , as n→∞,

in SM([0, 1]), where Mα,β is the Karlin random sup-measure on [0, 1]:

Mα,β(A) := sup
`≥1

1

Γ
1/α
`

1l{N`(x`A) 6=0}, A ⊂ [0, 1],

where {(Γ`, x`)}`≥1 is an enumeration of a Poisson process on R+ ×R+ with intensity

dγ × Γ(1− β)−1βx−β−1dx and {N`}`≥1 are i.i.d. standard Poisson processes on R+.

Mα,β has been considered as example of Choquet-RSM in Molchanov & Strokorb
(2016).
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Karlin random sup-measure

For all z > 0,

P(Mα,β(A) ≤ z) = exp

(
−
θβ(A)

zα

)
with θβ(A) := Leb(A)β .

The function θβ is the extremal coefficient of Mα,β .

Another representation:

Mα,β(A)
d
= sup
`≥1

1

Γ
1/α
`

1l
{R(β)

`
∩A6=∅}

, A ⊂ [0, 1],

with (R(β)
` )`≥1 i.i.d. random sets such that

P(R(β) ∩ A 6= ∅) = Leb(A)β .

Remark: R(β) d
=

Qβ⋃
i=1

{Ui},

with (Ui ) be i.i.d. uniformly distributed over (0, 1) and Qβ an N-valued random
variable such that

P(Qβ = k) =
β(1− β)(2− β) · · · (k − 1− β)

k!
, k ∈ N.
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Karlin Random Sup-Measure

The Karlin RSM can be compared with:

Mis
α(·) = sup

`∈N

1

Γ
1/α
`

1l{U`∈ · } (independently scattered RSM)

where (U`) are i.i.d. uniformely distributed on [0, 1], or

Msr
α,β(·) = sup

`∈N

1

Γ
1/α
`

1l{
S

(β)
`
∩ · 6=∅

} (stable-regenerative RSM)

where (S
(β)
` ) are i.i.d. random closed sets of [0, 1], each consisting of a randomly

shifted β-stable regenerative set. (Lacaux & Samorodnitsky, 2016)

The max-increment process {M((t, t + 1])}t∈R of
Mis

α is mixing,
Msr

α,β is ergodic but not mixing,

Mα,β is not ergodic.
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Idea of the proof of the theorem

For each n ∈ N, ` ≥ 1, let

Rn,` := {i ∈ {1, . . . , n} : Yi = `}

and consider the point process

ξn :=
∑

`≥1,Kn,` 6=0

δ( ε`
bn
,

Rn,`
n

),

Theorem
For bn = (CεΓ(1− β)nβL(n))1/α,

ξn ⇒ ξ :=
∞∑
`=1

δ(
Γ
−1/α
`

,R(β)
`

), as n→∞,

in M+((0,∞)×F([0, 1])).
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Introduce

(εn,k )k=1,...,Z(n) the order statistics of {ε` : Kn,` 6= 0} (assume no equalities),

ˆ̀
n,k the index such that εn,k = ε ˆ̀

n,k
,

R̂n,k = {i ∈ {1, . . . , n} : Yi = ˆ̀
n,k}.

Then

ξn =

Z(n)∑
k=1

δ(
εn,k

bn
,

R̂n,k
n

).

The joint convergence of the
R̂n,k

n
uses Poissonization technique.

Let N be a standard Poisson process on R+, and τ1, τ2, . . . its arrival times.
At time n:

K̃n,` = #{i : Yi = ` and τi ≤ n} and Z̃(n) = #{` : K̃n` 6= 0}

The order statistics of {ε` : K̃n,` 6= 0} is (εN(n),k ).

Let ˜̀
n,k the index s.t. εn,k = ε ˜̀

n,k
and R̃n,k = {τi ≤ n : Yi = ˜̀

n,k}.

Then

dH

(
R̃n,k/n, R̂n,k/n

)
→ 0, as n→∞.
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