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POT-analysis of heavy tails
Xi , 1 ≤ i ≤ n, iid observations with cdf F ∈ D(G1/α), α > 0, i.e. as t →∞

1− F (tx)

1− F (t)
→ x−α, ∀x > 0.

Hill estimator of α:

α̂n,k := 1

/[
1

k − 1

k−1∑
i=1

log
Xn−i+1:n

Xn−k+1:n

]
where Xj :n denotes the jth smallest order statistic.

Hill estimator is essentially ML estimator if k largest observations behave like
Pareto random variables.

Performance strongly depends on choice of k :

k must be sufficiently small such that Pareto approximation is justified
(; small bias)

k must be sufficiently large such that average is taken over many
observations (; small variance)
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Threshold selection

α̂n,k := 1

/[
1

k − 1

k−1∑
i=1

log
Xn−i+1:n

Xn−k+1:n

]
Several procedures for data-dependent selection of k have been suggested, e.g.
using

plug-in methods: Hall & Welsh (’85), . . .
resampling: Hall (’90), Danielsson et al. (’01), Gomes & Oliveira (’01), . . .
Lepskii method: D. & Kaufmann (’98), . . .
using log-spacings: Guillou & Hall (’01), Beirlant et al. (’04), . . .
distance minimization: Clauset, Shalizi & Newman (2009)
(over 2700 citations)

Idea: Choose k such that the Kolmogorov-Smirnov distance between empirical
cdf of exceedances over Xn−k+1:n and fitted Pareto distribution is minimal.

More precisely, minimize

Dn,k := sup
y≥1

∣∣∣∣ 1

k − 1

k−1∑
i=1

1(y ,∞)

( Xn−i+1:n

Xn−k+1:n

)
− y−α̂n,k

∣∣∣∣
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Threshold selection by distance minimization

minimize Dn,k := sup
y≥1

∣∣∣∣ 1

k − 1

k−1∑
i=1

1(y ,∞)

( Xn−i+1:n

Xn−k+1:n

)
− y−α̂n,k

∣∣∣∣
Rationale:

If Pareto approximation is accurate for top k order statistics, then Dn,k is of
stochastic order k−1/2, i.e. it shrinks with increasing k

If below threshold u cdf is poorly approximated by Pareto cdf, Dn,k quickly
increases as k increases such that Xn−k:n shrinks below u.

Indeed, it seems plausible that procedure yields k converging at the
“optimal rate”.

However, even if all observations are exact Pareto, Dn,k will be minimal for k
much smaller than n due to random fluctuations.
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Pareto case
Pareto with structural break
Under Second Order Condition

Gaussian approximation: α known
Assume F (x) = 1− x−α (x > 1) with known α > 0. Consider KS distance

D̄n,k := sup
y≥1

∣∣∣∣ 1

k − 1

k−1∑
i=1

1(y ,∞)

( Xn−i+1:n

Xn−k+1:n

)
− y−α

∣∣∣∣
= max

1≤i<k

∣∣∣( Xn−i+1:n

Xn−k+1:n

)−α
− i

k

∣∣∣+ O(k−1)

=d max
1≤i<k

∣∣∣ Ui :n

Uk:n
− i

k

∣∣∣+ O(k−1)

for iid uniform rv’s Uj .

Approximation of uniform order statistics by Brownian motion yields

n1/2D̄n,dnte → sup
0<z≤1

z
∣∣∣W (tz)

tz
− W (t)

t

∣∣∣
weakly in D(0, 1].

Drees Threshold Selection by Distance Minimization 5/24



Threshold Selection Problem
Asymptotics
Simulations

Pareto case
Pareto with structural break
Under Second Order Condition

Gaussian approximation: α known
Assume F (x) = 1− x−α (x > 1) with known α > 0. Consider KS distance

D̄n,k := sup
y≥1

∣∣∣∣ 1

k − 1

k−1∑
i=1

1(y ,∞)

( Xn−i+1:n

Xn−k+1:n

)
− y−α

∣∣∣∣
= max

1≤i<k

∣∣∣( Xn−i+1:n

Xn−k+1:n

)−α
− i

k

∣∣∣+ O(k−1)

=d max
1≤i<k

∣∣∣ Ui :n

Uk:n
− i

k

∣∣∣+ O(k−1)

for iid uniform rv’s Uj .

Approximation of uniform order statistics by Brownian motion yields

n1/2D̄n,dnte → sup
0<z≤1

z
∣∣∣W (tz)

tz
− W (t)

t

∣∣∣
weakly in D(0, 1].

Drees Threshold Selection by Distance Minimization 5/24



Threshold Selection Problem
Asymptotics
Simulations

Pareto case
Pareto with structural break
Under Second Order Condition

“Early stopping”

n1/2D̄n,dnte → sup
0<z≤1

z
∣∣∣W (tz)

tz
− W (t)

t

∣∣∣
One might thus expect that the value k for which D̄n,k is minimized behaves like
nT ∗ with

T ∗ := arg min
0<t≤1

sup
0<z≤1

z
∣∣∣W (tz)

tz
− W (t)

t

∣∣∣.
Despite

sup
0<z≤1

z
∣∣∣W (tz)

tz
− W (t)

t

∣∣∣ =d t−1/2 sup
0<z≤1

z
∣∣∣W (z)

z
−W (1)

∣∣∣,
with non-negligible probability, t∗ will be substantially smaller than 1,
leading to too small a value for k .
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Pareto case
Pareto with structural break
Under Second Order Condition

Gaussian approximation: α unknown
If α is unknown and replaced with the Hill estimator, process convergence
becomes more involved.

Theorem

Suppose F (x) = 1− cx−α (x > c1/α).

1 For all k = kn = o(n)

inf
2≤j≤k

n1/2Dn,j
(P)−→∞.

2

n1/2Dn,dnte

→ sup
0<z≤1

∣∣∣∣( ∫ 1

0

W (tx)

tx
dx − W (t)

t

)
z log z +

(W (tz)

tz
− W (t)

t

)
z

∣∣∣∣
=: sup

0<z≤1
|Y (t, z)|

weakly in D(0, 1].
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Pareto case
Pareto with structural break
Under Second Order Condition

Asymptotic behavior of selected threshold
Let k∗ := arg min2≤k≤n Dn,k

Corollary

Suppose F (x) = 1− cx−α (x > c1/α). Then

k∗

n
→ arg inf

t∈(0,1]
sup

0<z≤1
|Y (t, z)| =: T ∗,

provided the process (sup0<z≤1 |Y (t, z)|)t∈(0,1] has a unique point of minimum
a.s.

In that case,

n1/2(α̂n,k∗ − α)→ α

(∫ 1

0

W (T ∗x)

T ∗x
dx − W (T ∗)

T ∗

)
weakly.

The limit rv is not normally distributed.
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Pareto case
Pareto with structural break
Under Second Order Condition

Distribution of k∗/n
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0.5

0.6
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1

Quantile function of T ∗/n for sample sizes n = 100 (magenta dash-dotted),
n = 1000 (red dashed), and limit (blue solid)
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Pareto case
Pareto with structural break
Under Second Order Condition

Distribution of α̂n,k∗
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Pareto case
Pareto with structural break
Under Second Order Condition

Limit distribution of α̂n,k∗
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Normal-QQ-plot for limit distribution of n1/2(α̂n,k∗ − α)

In the limit, the variance is about 1.95 times the variance of α̂n,n
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In the limit, the variance is about 1.95 times the variance of α̂n,n
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Pareto case
Pareto with structural break
Under Second Order Condition

Structural breaks

In Clauset et al. (2009) (and similar papers) it is assumed that above some
threshold u F equals a Pareto cdf, while below it has a different structure.

Selection procedures should yield k such that Xn−k+1:n is close to u.

There is no obvious asymptotic setting in which to embed such a situation.

However, simulations suggest that k∗/(n(1− F (u))) roughly behaves like T ∗ if
break is sufficiently clear and n is large.

Hence procedures often selects too small a k , i.e. too high a threshold.
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Pareto case
Pareto with structural break
Under Second Order Condition

Simulation
1− F (x) =

{
x−2, x > x0,
cx−4, x0 ≥ x > c1/4

with x0, c such that 1− F (x0) = 0.3, F continuous.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000
0
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0.15

0.2

0.25

0.3
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0.4

Left: qf of k∗/n for n = 1000; red line indicates break point
Right: RMSE of Hill estimator as function of k ; red line indicates RMSE of α̂n,k∗

increase of RMSE and of SD ≈ 31%
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Pareto case
Pareto with structural break
Under Second Order Condition

Second order condition
Assume, as t ↓ 0,

F←(1− tx)

F←(1− t)
− x−1/α

A(t)
→ ψ(x), ∀ x > 0,

with A(t) ↓ 0, regularly varying at 0 with index ρ > 0,
ψ(x) not a multiple of x−1/α.

Then there exists sequence k̃ = k̃n →∞, k̃ = o(n) such that k̃1/2A(k̃/n)→ 1.

SD, bias balanced iff k � k̃ and then α̂n,k converges with the optimal rate k̃−1/2

(among all deterministic intermediate sequences k). Moreover, AMSE α̂n,k is

minimal iff k ∼ ck̃ for some constant c depending on α, ρ, ψ.

Most threshold selection methods mentioned in the beginning yield random
k̄ ∼ ck̃ under suitable conditions.

In this setting, minimizer of Dn,j can be analyzed only if minimization is restricted
to j ≤ k for some intermediate sequence k .

Drees Threshold Selection by Distance Minimization 14/24
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Asymptotics under second order condition

Theorem

1 inf2≤j≤k k̃
1/2Dn,j →∞ for all intermediate sequences k = o(k̃)

2

k̃1/2Dn,dk̃te → sup
0<z≤1

∣∣∣Y (t, z)−
(∫ 1

0

x1/αψ(x) dx · z log z + αz1/αψ(z)
)
tρ
∣∣∣

weakly in D(0,∞).

3 If k̃ = o(k), k = o(n) then, for all 0 < t0 < t1 <∞

inf
t∈[t0,t1]

k̃1/2Dn,dkte →∞.

This suggests (but doesn’t prove) that

k∗/k̃ → arg inf
0<t<∞

sup
0<z≤1

∣∣∣Y (t, z)−
(∫ 1

0

x1/αψ(x) dx · z log z + αz1/αψ(z)
)
tρ
∣∣∣.
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Simulations: Fréchet distribution

F (x) = exp(−x−4), x > 0
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Left: qf of k∗/n for n = 1000; red line indicates RMSE minimizing value
Right: RMSE of Hill estimator as function of k ; red line indicates RMSE of α̂n,k∗
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LPAN

Simulations: Student’s t-distribution

F Student’s t cdf with 4 degrees of freedom
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Left: qf of k∗/n for n = 1000; red line indicates RMSE minimizing value
Right: RMSE of Hill estimator as function of k ; red line indicates RMSE of α̂n,k∗
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Loss of efficiency

Increase of RMSE and standard deviation relative to Hill estimator with
deterministic k minimizing the RMSE; sample size n = 1000

distance minimization Lepskii’s method
F α RMSE SD RMSE
Frechet 1 41% 22% 12%

5 37% 14% 12%

t 1 32% 30% 15%
4 63% -28% 14%

10 49% -62% 30%

Stable 1/2 37% 13% 30%

log-gamma 3 35% -32% 9%
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Linear preferential attachment networks

LPAN are oriented graphs successively built starting from a core network;
in each step one of the following randomly chosen procedures is applied

(a) add new node and edge from this node to an existing node w ;
latter is chosen with probability proportional to number of existing incoming
edges of w plus a constant δin;

(b) add new edge from existing node v to existing node w ;
pair is chosen with probability proportional to (number of existing outgoing
edges of v plus a constant δout) × (number of existing incoming edges of w
plus a constant δin);

(c) add new node and edge from an existing node v this node;
v is chosen with probability proportional to number of existing outgoing
edges of v plus a constant δout
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Asymptotics of linear preferential attachment networks
Let

n: total number of nodes

n
(in)
i : number of nodes with i incoming edges

n
(out)
i : number of nodes with i outgoing edges

Ballobás et al. (2003):

(n
(in)
i /n)i∈N0 , (n

(out)
i /n)i∈N0 converge to pmf of distribution with Pareto type tail;

exponents α(in), α(out) can be calculated from probabilities of three procedures
and δin, δout

(see Samorodnitsky et al. (2016) and Wang & Resnick (2016) for results on joint
multivariate regular variation)

In the following simulations, in-degrees are observed;
note that observations are not iid.
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Simulations: LPAN
Model: probability of procedures (a)/(b)/(c): 0.3 / 0.5 / 0.2

δin = 2, δout = 1 (⇒ α = 2.5)
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Left: qf of k∗/n for n = 50, 000; red line indicates RMSE minimizing value
Right: RMSE of Hill estimator as function of k ; red line indicates RMSE of α̂n,k∗

increase of RMSE ≈ 9% (relative to optimal fixed k)
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Simulations: LPAN (cont.)
Model: probability of procedures (a)/(b)/(c): 0.3 / 0.5 / 0.2

δin = 2, δout = 1 (⇒ α = 2.5)
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Left: qf of k∗/n for n = 500, 000; red line indicates RMSE minimizing value
Right: RMSE of Hill estimator as function of k ; red line indicates RMSE of α̂n,k∗

increase of RMSE ≈ 4% (relative to optimal fixed k)
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Simulations: LPAN (cont.)
Q.: Why does minimum distance selection perform so much better for

LPAN data than for iid data under second order condition?

Possible answers: Because of

large sample size,

discrete data,

dependence,

conceptual difference to iid setting:

in iid setting, α has same clear meaning as exponent of regular variation of
1− F for all n

in LPAN, for any fixed n, distribution of in-degrees does not have a power
tail, i.e. α is meaningful only for n→∞!
For fixed n, there is no true α. Hence calculated RMSE has a completely
different meaning than in an iid setting.
Thus, here the RMSE may be mainly caused by difference between cdf of
in-degrees and limit cdf, not by a feature of the estimators.
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dependence, maybe, but why?

conceptual difference to iid setting:

in iid setting, α has same clear meaning as exponent of regular variation of
1− F for all n

in LPAN, for any fixed n, distribution of in-degrees does not have a power
tail, i.e. α is meaningful only for n→∞!
For fixed n, there is no true α. Hence calculated RMSE has a completely
different meaning than in an iid setting.
Thus, here the RMSE may be mainly caused by difference between cdf of
in-degrees and limit cdf, not by a feature of the estimators.

Drees Threshold Selection by Distance Minimization 23/24



Threshold Selection Problem
Asymptotics
Simulations

Under Second Order Condition
LPAN

Simulations: LPAN (cont.)
Q.: Why does minimum distance selection perform so much better for

LPAN data than for iid data under second order condition?

Possible answers: Because of

large sample size, but e.g. for iid Cauchy much worse behavior

discrete data, but e.g. for iid discretized Fréchet much worse behavior
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Thank you for your attention!
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