
Uncertainty relations for high dimensional
random unitary matrices

Radosław Adamczak

University of Warsaw

High Dimensional Probability VIII
Oaxaca 2017



Some information theory

X - a random variable with values in a finite set AX , with
law pX .
Shannon’s entropy

H(X ) = H(pX ) = −
∑

x∈AX

pX (x) log pX (x).

Conditional entropy

H(Y |X ) =
∑

x∈AX

pX (x)
(
−
∑

y∈AY

pY |X (y |x) log(pY |X (y |x))
)

= EH(P(Y ∈ ·|X )).

Mutual information

I(Y : X ) = H(Y )− H(Y |X ) = H(X )− H(X |Y )

= H(X ) + H(Y )− H(X ,Y ).



Mutual information

I(X : Y ) = H(Y )− H(Y |X ) = H(X )− H(X |Y )

= H(X ) + H(Y )− H(X ,Y ).

A simple observation

I(X ,Y : Z ,Y ) ≤ I(X ,Y : Z ) + H(Y ),

i.e. sending k -bits cannot increase the mutual information
by more than k -bits.



Quantum setting

Pure states – unit elements of a complex Hilbert space H
(in our case of dimension d , ' Cd )
We identify a state x ∈ H with the projection on span(x),
i.e. xx∗

Mixed states - convex combinations of pure states, i.e.
positive self-adjoint operators of trace one

ψ =
n∑

i=1

pixix∗i . |xi | = 1,pi ≥ 0,
n∑

i=1

pi = 1.

A measurement, POVM – {Pi}i∈I – a collection of positive
operators on Cd , such that∑

i∈I

Pi = Id .

A measurement on a system in state ψ gives output i with
probability pψ(i) = trPiψ.



A measurement, POVM – {Pi}i∈I – a collection of positive
operators on Cd , such that∑

i∈I

Pi = Id .

A measurement on a system in state ψ gives output i with
probability pψ(i) = trPiψ.

Nondegenerate von Neumann measurement, Pi = eie∗i ,
where e1, . . . ,ed - an orthonormal basis. For a pure state
x ,

px (i) = |〈x ,ei〉|2, i = 1, . . . ,d .



Bipartite systems

A system composed of two subsystems is described by a
tensor product of corresponding Hilbert spaces. Typically:

Alice has access to a part of the system (some particles)
modeled on a Hilbert space HA, dim HA = dA

Bob has access to the remaining part of the system – HB,
dim HB = dB.
The whole system is H = HA ⊗ HB, with dim H = dAdB.

Local measurements

{Pi ⊗Qj}i∈I,j∈J

Alice and Bob measure only their parts of the system,
gives rise to a pair of random variables X ,Y with values in
I, J resp.



Local measurements

{Pi ⊗Qj}i∈I,j∈J

Alice and Bob measure only their parts of the system,
gives rise to a pair of random variables X ,Y with values in
I, J resp.

Classical mutual information of a bipartite state ψ.

Ic(ψ) = max
(X ,Y )

I(X : Y ),

i.e. Alice and Bob measure their parts of the systems and one
looks at the measurements which maximize the mutual
information between their results.



Information locking (very informally)

DiVincenzo et. al. (2003) found a state ψ ∈ C2d ⊗ Cd shared
between Alice and Bob, s.t.

if Alice sends to Bob a single bit (which changes the state
ψ → ψ′) the classical mutual information increases by
1
2 log d d→∞→ ∞, i.e.

Ic(ψ′)− Ic(ψ) ≥ 1
2

log d .

Physicists say that a single bit ‘unlocks’ 1
2 log d bits of

correlation locked in ψ.
This cannot happen in classical information theory.



A rough description of the protocol

{U1,U2, . . . ,Ut} – unitaries (specially chosen), {e1, . . . ,ed}
- orth. basis in Cd .
Alice chooses uniformly at random k ∈ {1, . . . , t} and
m ∈ {1, . . . ,d}, prepares two systems, one in state em, the
other in state Ukem and sends the latter to Bob.
If Bob doesn’t know k , he can only say very little about
(m, k). For t = 2:

Ic(ψ) ≤ 1
2

log d .

If Bob knows k , he can invert Uk and measure m

Ic(ψ′) = 1 + log d .



Entropic uncertainty

For the construction to work, one needs a lower bound on

min
x∈Cn,|x |=1

1
t

t∑
k=1

H(pUk x ),

where py = (py (1), . . . ,py (d)) with

py (m) = |〈y ,em〉|2.

Theorem (Maassen-Uffink)
U1,U2 – unitary matrices. Then

min
|x |=1

1
2

(
H(pU1x ) + H(pU2x )

)
≥ − log c,

where c = maxi,j≤n |〈U0U∗1ei ,ej〉|.



Theorem (Maassen-Uffink)
U1,U2 – unitary matrices. Then

min
|x |=1

1
2

(
H(pU1x ) + H(pU2x )

)
≥ − log c,

where c = maxi,j≤n |〈U0U∗1ei ,ej〉|.

Example

If U1,U2 are mutually unbiased (e.g. c = 1/
√

d), e.g. U1 = Id ,
U2 - Fourier, then

min
|x |=1

1
2

(
H(pU1x ) + H(pU2x )

)
≥ 1

2
log d

This is best possible since for x = U−1
1 e1, H(pU1x ) = 0 and

H(pU2x ) ≤ log d .



What happens for general t?

Can you find U1, . . . ,Ut such that

Θ(d , t) := min
x∈Cn,|x |=1

1
t

t∑
k=1

H(pUk x ) ≥ (1− 1
t

) log d?

For 3 ≤ t ≤
√

d mutually unbiased bases do not work
(Balister-Wehner, Ambainis). You get again 1

2 log d .
For t = d + 1 you get (Ivanovic, Sanchez, 1992)
Θ(d , t) ≥ log(d + 1)− 1.
In general random constructions only

Hayden et al. (2004)

Θ(d , log4 d) ≥ log d −O(1)

Fawzi-Hayden-Sen (2013)

Θ(d , t) ≥
(

1−
√

O(1) log t
t

)
log d − log

( t
log t

)
.



Theorem (Latała, Puchała, Życzkowski, A. 2014)
If U1, . . . ,Ut are i.i.d. (Haar) random unitary matrices, then with
probability 1 - o(1), as d →∞,

min
x∈Cn,|x |=1

1
t

t∑
k=1

H(pUk x ) ≥
(

1− 1
t

)
log d − C,

where C is a universal constant.

In particular this answers the question of Leung-Wehner-Winter
(2009) about identifying for fixed t the limit

lim inf
d→∞

1
log d

max
U1,...,Ut

min
x∈Cn,|x |=1

1
t

t∑
k=1

H(pUk x ),

which turns out to be 1− 1/t .



Sketch of proof

Majorization p = (p(1), . . . ,p(N)), q = (q(1), . . . ,q(N)).
We say that q majorizes p (p ≺ q) if for all k ≤ N,

k∑
i=1

p↓(i) ≤
k∑

i=1

q↓(i),

with equality for k = N.
The function p 7→ F (p) = −

∑N
i=1 p(i) log p(i) is Schur

concave, i.e.

p ≺ q =⇒ F (p) ≥ F (q).

The main idea: Find a sequence q = (q(1), . . . ,q(td))
such that for all x ,

p := pU1x ⊕ · · · ⊕ pUt x ≺ q.



An observation due to Rudnicki-Puchała-Życzkowski
(2014)

k∑
i=1

p↓(i) ≤ s2
k ,

where sk is the maximum operator norm of a matrix formed
by choosing k columns from [U∗1 |U∗2 | . . . |U∗t ].
Standard concentration of measure + ε-net + union bound
approach gives

sk ≤ 1 + C

√
k
d

ln
(edt

k

)
This allows you to define q(k) ' s2

k − s2
k−1. Estimating the

‘entropy’ of q ends the proof.



A different perspective - towards metric uncertainty
relations

The inequality

min
x∈Cn,|x |=1

1
t

t−1∑
k=0

H(pUk x ) ≥
(

1− ε
)

log d

can be rewritten as

max
x∈Cn,|x |=1

1
t

t−1∑
k=0

dKL

(
pUk x ,unif ([d ])

)
≤ ε log d ,

where dKL(ν, µ) =
∫

log( dν
dµ)dν.

Question:

Can you replace dKL with something else, e.g. the total
variation or Hellinger distance?



Total variation uncertainty relations (Fawzi-Hayden-Sen)

A change of setting,
a bipartite system H = HA ⊗ HB, with HA = CdA , HB = CdB .
{ei}i∈[dA], {fj}j∈[dB ], {ei ⊗ fj}i∈[dA],j∈[dB ] - orth. bases in
HA,HB,H.
For x ∈ H, define pA

ψ = (pA
ψ(1), . . . ,pA

ψ(dA)) by

pA
x (i) =

dB∑
j=1

|〈x ,ei ⊗ fj〉|2.

pA
x (i) is the probability of getting outcome i , when

measuring the A part of the system in the basis e1, . . . ,edA .

Question

Can we find unitaries U1, . . . ,Ut acting on H so that

max
x∈H,|x |=1

1
t

t∑
k=1

dTV (pA
Uk x ,unif ([dA])) ≤ ε?



Question

Can we find unitaries U1, . . . ,Ut acting on H so that

max
x∈H,|x |=1

1
t

t∑
k=1

dTV (pA
Uk x ,unif ([dA])) ≤ ε?

Geometrically:

Can we find t decompositions of CdAdB into dA orthogonal
subspaces of dimension dB, such that for any x in most
decompositions |x |2 is evenly distributed among the
subspaces?



Theorem (Fawzi-Hayden-Sen, 2013)

If dB ≥ C
ε2 and t ≥ C log(1/ε)/ε2 and U1, . . . ,Ut are i.i.d.

random unitary matrices, then with high probability

max
x∈H,|x |=1

1
t

t∑
k=1

dTV (pA
Uk x ,unif ([dA])) ≤ ε (1)

It is not difficult to eliminate log(1/ε) in the assumption on t .

Proposition (A. 2016)
If (1) holds for some (deterministic) matrices U1, . . . ,Ut then
dB, t ≥ c/ε2

for dKL, t = O(1/ε), no need for HB

for dTV , t = O(1/ε2), one needs an auxiliary system HB.



Hellinger distance

p,q - distributions on {1, . . . ,N}

dH(p,q) =

√√√√ N∑
i=1

(
√

p(i)−
√

q(i))2

dTV (p,q) ≤
√

2dH(p,q)

Theorem (A. 2016)

If t ,dB ≥ C/ε2 and U1, . . . ,Ud are i.i.d. random unitaries, then
with high probability

max
|x |=1

√√√√1
t

t∑
k=1

dH

(
pA

Uk x ,unif ([dA])
)2
≤ ε.



Theorem (A. 2016)

If t ,dB ≥ C/ε2 and U1, . . . ,Ud are i.i.d. random unitaries, then
with high probability

max
|x |=1

√√√√1
t

t∑
k=1

dH

(
pA

Uk x ,unif ([dA])
)2
≤ ε.

Adapting G. Schechtman’s proof of (Gaussian) Dvoretzky
theorem to random unitary matrices.

x 7→
√

1
t
∑t

k=1 dH

(
pA

Uk x ,unif ([dA])
)2

is subgaussian

Comparison with a Gaussian process via the Majorizing
measure theorem
A byproduct: improved dependence on ε in Dvoretzky thm.
for `n1(`m2 ).
Weaker conditions on t if restricting x to a subset,
t = 1 is enough for separable states x = xA ⊗ xB
(Applications to Quantum Data Hiding).



Thank you


