Uncertainty relations for high dimensional random unitary matrices

Radosław Adamczak

University of Warsaw

High Dimensional Probability VIII Oaxaca 2017

Some information theory

- X - a random variable with values in a finite set A_{X}, with law p_{X}.
- Shannon's entropy

$$
H(X)=H\left(p_{X}\right)=-\sum_{x \in A_{X}} p_{X}(x) \log p_{X}(x)
$$

- Conditional entropy

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in A_{X}} p_{X}(x)\left(-\sum_{y \in A_{Y}} p_{Y \mid X}(y \mid x) \log \left(p_{Y \mid X}(y \mid x)\right)\right) \\
& =\mathbb{E} H(\mathbb{P}(Y \in \cdot \mid X))
\end{aligned}
$$

- Mutual information

$$
\begin{aligned}
I(Y: X) & =H(Y)-H(Y \mid X)=H(X)-H(X \mid Y) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

- Mutual information

$$
\begin{aligned}
I(X: Y) & =H(Y)-H(Y \mid X)=H(X)-H(X \mid Y) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

- A simple observation

$$
I(X, Y: Z, Y) \leq I(X, Y: Z)+H(Y)
$$

i.e. sending k-bits cannot increase the mutual information by more than k-bits.

Quantum setting

- Pure states - unit elements of a complex Hilbert space H (in our case of dimension $d, \simeq \mathbb{C}^{d}$)
- We identify a state $x \in H$ with the projection on $\operatorname{span}(x)$, i.e. $x x^{*}$
- Mixed states - convex combinations of pure states, i.e. positive self-adjoint operators of trace one

$$
\psi=\sum_{i=1}^{n} p_{i} x_{i} x_{i}^{*} . \quad\left|x_{i}\right|=1, p_{i} \geq 0, \sum_{i=1}^{n} p_{i}=1
$$

- A measurement, POVM - $\left\{P_{i}\right\}_{i \in I}$ - a collection of positive operators on \mathbb{C}^{d}, such that

$$
\sum_{i \in I} P_{i}=I d
$$

A measurement on a system in state ψ gives output i with probability $p_{\psi}(i)=\operatorname{tr} P_{i} \psi$.

- A measurement, POVM - $\left\{P_{i}\right\}_{i \in I}$ - a collection of positive operators on \mathbb{C}^{d}, such that

$$
\sum_{i \in I} P_{i}=I d
$$

A measurement on a system in state ψ gives output i with probability $p_{\psi}(i)=\operatorname{tr} P_{i} \psi$.

- Nondegenerate von Neumann measurement, $P_{i}=e_{i} e_{i}^{*}$, where e_{1}, \ldots, e_{d}-an orthonormal basis. For a pure state x,

$$
p_{x}(i)=\left|\left\langle x, e_{i}\right\rangle\right|^{2}, \quad i=1, \ldots, d
$$

Bipartite systems

A system composed of two subsystems is described by a tensor product of corresponding Hilbert spaces. Typically:

- Alice has access to a part of the system (some particles) modeled on a Hilbert space $H_{A}, \operatorname{dim} H_{A}=d_{A}$
- Bob has access to the remaining part of the system $-H_{B}$, $\operatorname{dim} H_{B}=d_{B}$.
- The whole system is $H=H_{A} \otimes H_{B}$, with $\operatorname{dim} H=d_{A} d_{B}$.

Local measurements

- $\left\{P_{i} \otimes Q_{j}\right\}_{i \in I, j \in J}$
- Alice and Bob measure only their parts of the system, gives rise to a pair of random variables X, Y with values in I, J resp.

Local measurements

- $\left\{P_{i} \otimes Q_{j}\right\}_{i \in I, j \in J}$
- Alice and Bob measure only their parts of the system, gives rise to a pair of random variables X, Y with values in I, J resp.

Classical mutual information of a bipartite state ψ.

$$
I_{C}(\psi)=\max _{(X, Y)} I(X: Y)
$$

i.e. Alice and Bob measure their parts of the systems and one looks at the measurements which maximize the mutual information between their results.

Information locking (very informally)

DiVincenzo et. al. (2003) found a state $\psi \in \mathbb{C}^{2 d} \otimes \mathbb{C}^{d}$ shared between Alice and Bob, s.t.

- if Alice sends to Bob a single bit (which changes the state $\psi \rightarrow \psi^{\prime}$) the classical mutual information increases by $\frac{1}{2} \log d \xrightarrow{d \rightarrow \infty} \infty$, i.e.

$$
I_{C}\left(\psi^{\prime}\right)-I_{C}(\psi) \geq \frac{1}{2} \log d
$$

- Physicists say that a single bit 'unlocks' $\frac{1}{2} \log d$ bits of correlation locked in ψ.
- This cannot happen in classical information theory.

A rough description of the protocol

- $\left\{U_{1}, U_{2}, \ldots, U_{t}\right\}$ - unitaries (specially chosen), $\left\{e_{1}, \ldots, e_{d}\right\}$ - orth. basis in \mathbb{C}^{d}.
- Alice chooses uniformly at random $k \in\{1, \ldots, t\}$ and $m \in\{1, \ldots, d\}$, prepares two systems, one in state e_{m}, the other in state $U_{k} e_{m}$ and sends the latter to Bob.
- If Bob doesn't know k, he can only say very little about (m, k). For $t=2$:

$$
I_{c}(\psi) \leq \frac{1}{2} \log d
$$

- If Bob knows k, he can invert U_{k} and measure m

$$
I_{c}\left(\psi^{\prime}\right)=1+\log d
$$

Entropic uncertainty

For the construction to work, one needs a lower bound on

$$
\min _{x \in \mathbb{C}^{n},|x|=1} \frac{1}{t} \sum_{k=1}^{t} H\left(p_{U_{k} x}\right),
$$

where $p_{y}=\left(p_{y}(1), \ldots, p_{y}(d)\right)$ with

$$
p_{y}(m)=\left|\left\langle y, e_{m}\right\rangle\right|^{2} .
$$

Theorem (Maassen-Uffink)

U_{1}, U_{2} - unitary matrices. Then

$$
\min _{|x|=1} \frac{1}{2}\left(H\left(p_{U_{1} x}\right)+H\left(p_{U_{2} x}\right)\right) \geq-\log c,
$$

where $c=\max _{i, j \leq n} \mid\left\langle U_{0} U_{1}^{*} e_{i}, e_{j}\right\rangle$.

Theorem (Maassen-Uffink)

U_{1}, U_{2} - unitary matrices. Then

$$
\min _{|x|=1} \frac{1}{2}\left(H\left(p_{U_{1} x}\right)+H\left(p_{U_{2} x}\right)\right) \geq-\log c
$$

where $c=\max _{i, j \leq n}\left|\left\langle U_{0} U_{1}^{*} e_{i}, e_{j}\right\rangle\right|$.

Example

If U_{1}, U_{2} are mutually unbiased (e.g. $c=1 / \sqrt{d}$), e.g. $U_{1}=I d$, U_{2} - Fourier, then

$$
\min _{|x|=1} \frac{1}{2}\left(H\left(p_{U_{1} x}\right)+H\left(p_{U_{2} x}\right)\right) \geq \frac{1}{2} \log d
$$

This is best possible since for $x=U_{1}^{-1} e_{1}, H\left(p_{U_{1} x}\right)=0$ and $H\left(p_{U_{2} x}\right) \leq \log d$.

What happens for general t ?

Can you find U_{1}, \ldots, U_{t} such that

$$
\Theta(d, t):=\min _{x \in \mathbb{C}^{n},|x|=1} \frac{1}{t} \sum_{k=1}^{t} H\left(p_{U_{k} x}\right) \geq\left(1-\frac{1}{t}\right) \log d ?
$$

- For $3 \leq t \leq \sqrt{d}$ mutually unbiased bases do not work (Balister-Wehner, Ambainis). You get again $\frac{1}{2} \log d$.
- For $t=d+1$ you get (Ivanovic, Sanchez, 1992) $\Theta(d, t) \geq \log (d+1)-1$.
- In general random constructions only
- Hayden et al. (2004)

$$
\Theta\left(d, \log ^{4} d\right) \geq \log d-O(1)
$$

- Fawzi-Hayden-Sen (2013)

$$
\Theta(d, t) \geq\left(1-\sqrt{\frac{O(1) \log t}{t}}\right) \log d-\log \left(\frac{t}{\log t}\right)
$$

Theorem (Latała, Puchała, Życzkowski, A. 2014)

If U_{1}, \ldots, U_{t} are i.i.d. (Haar) random unitary matrices, then with probability $1-o(1)$, as $d \rightarrow \infty$,

$$
\min _{x \in \mathbb{C}^{n},|x|=1} \frac{1}{t} \sum_{k=1}^{t} H\left(p_{U_{k} x}\right) \geq\left(1-\frac{1}{t}\right) \log d-C
$$

where C is a universal constant.
In particular this answers the question of Leung-Wehner-Winter (2009) about identifying for fixed t the limit

$$
\liminf _{d \rightarrow \infty} \frac{1}{\log d} \max _{U_{1}, \ldots, U_{t}} \min _{x \in \mathbb{C}^{n},|x|=1} \frac{1}{t} \sum_{k=1}^{t} H\left(p_{U_{k} x}\right)
$$

which turns out to be $1-1 / t$.

Sketch of proof

- Majorization $p=(p(1), \ldots, p(N)), q=(q(1), \ldots, q(N))$. We say that q majorizes $p(p \prec q)$ if for all $k \leq N$,

$$
\sum_{i=1}^{k} p^{\downarrow}(i) \leq \sum_{i=1}^{k} q^{\downarrow}(i)
$$

with equality for $k=N$.

- The function $p \mapsto F(p)=-\sum_{i=1}^{N} p(i) \log p(i)$ is Schur concave, i.e.

$$
p \prec q \Longrightarrow F(p) \geq F(q) .
$$

- The main idea: Find a sequence $q=(q(1), \ldots, q(t d))$ such that for all x,

$$
p:=p_{U_{1} x} \oplus \cdots \oplus p_{U_{t} x} \prec q .
$$

- An observation due to Rudnicki-Puchała-Życzkowski (2014)

$$
\sum_{i=1}^{k} p^{\downarrow}(i) \leq s_{k}^{2}
$$

where s_{k} is the maximum operator norm of a matrix formed by choosing k columns from $\left[U_{1}^{*}\left|U_{2}^{*}\right| \ldots \mid U_{t}^{*}\right]$.

- Standard concentration of measure $+\epsilon$-net + union bound approach gives

$$
s_{k} \leq 1+C \sqrt{\frac{k}{d} \ln \left(\frac{e d t}{k}\right)}
$$

- This allows you to define $q(k) \simeq s_{k}^{2}-s_{k-1}^{2}$. Estimating the 'entropy' of q ends the proof.

A different perspective - towards metric uncertainty relations

The inequality

$$
\min _{x \in \mathbb{C}^{n},|x|=1} \frac{1}{t} \sum_{k=0}^{t-1} H\left(p_{U_{k} x}\right) \geq(1-\varepsilon) \log d
$$

can be rewritten as

$$
\max _{x \in \mathbb{C}^{n},|x|=1} \frac{1}{t} \sum_{k=0}^{t-1} d_{K L}\left(p_{U_{k} x}, \operatorname{unif}([d])\right) \leq \varepsilon \log d
$$

where $d_{K L}(\nu, \mu)=\int \log \left(\frac{d \nu}{d \mu}\right) d \nu$.

Question:

Can you replace $d_{K L}$ with something else, e.g. the total variation or Hellinger distance?

Total variation uncertainty relations (Fawzi-Hayden-Sen)

A change of setting,

- a bipartite system $H=H_{A} \otimes H_{B}$, with $H_{A}=\mathbb{C}^{d_{A}}, H_{B}=\mathbb{C}^{d_{B}}$.
- $\left\{e_{i}\right\}_{i \in\left[d_{A}\right]},\left\{f_{j}\right\}_{j \in\left[d_{B}\right]},\left\{e_{i} \otimes f_{j}\right\}_{i \in\left[d_{d}\right], j \in\left[d_{d}\right]}$ - orth. bases in H_{A}, H_{B}, H.
- For $x \in H$, define $p_{\psi}^{A}=\left(p_{\psi}^{A}(1), \ldots, p_{\psi}^{A}\left(d_{A}\right)\right)$ by

$$
p_{x}^{A}(i)=\sum_{j=1}^{d_{B}}\left|\left\langle x, e_{i} \otimes f_{j}\right\rangle\right|^{2} .
$$

- $p_{x}^{A}(i)$ is the probability of getting outcome i, when measuring the A part of the system in the basis $e_{1}, \ldots, e_{d_{A}}$.

Question

Can we find unitaries U_{1}, \ldots, U_{t} acting on H so that

$$
\max _{x \in H,|x|=1} \frac{1}{t} \sum_{k=1}^{t} d_{T V}\left(p_{U_{k} x}^{A}, u n i f\left(\left[d_{A}\right]\right)\right) \leq \varepsilon ?
$$

Question

Can we find unitaries U_{1}, \ldots, U_{t} acting on H so that

$$
\max _{x \in H,|x|=1} \frac{1}{t} \sum_{k=1}^{t} d_{T V}\left(p_{U_{k} X}^{A}, \operatorname{unif}\left(\left[d_{A}\right]\right)\right) \leq \varepsilon ?
$$

Geometrically:

Can we find t decompositions of $\mathbb{C}^{d_{A} d_{B}}$ into d_{A} orthogonal subspaces of dimension d_{B}, such that for any x in most decompositions $|x|^{2}$ is evenly distributed among the subspaces?

Theorem (Fawzi-Hayden-Sen, 2013)

If $d_{B} \geq \frac{C}{\varepsilon^{2}}$ and $t \geq C \log (1 / \varepsilon) / \varepsilon^{2}$ and U_{1}, \ldots, U_{t} are i.i.d. random unitary matrices, then with high probability

$$
\begin{equation*}
\max _{x \in H,|x|=1} \frac{1}{t} \sum_{k=1}^{t} d_{T V}\left(p_{U_{k} x}^{A}, \text { unif }\left(\left[d_{A}\right]\right)\right) \leq \varepsilon \tag{1}
\end{equation*}
$$

It is not difficult to eliminate $\log (1 / \varepsilon)$ in the assumption on t.

Proposition (A. 2016)

If (1) holds for some (deterministic) matrices U_{1}, \ldots, U_{t} then $d_{B}, t \geq c / \varepsilon^{2}$

- for $d_{K L}, t=O(1 / \varepsilon)$, no need for H_{B}
- for $d_{T V}, t=O\left(1 / \varepsilon^{2}\right)$, one needs an auxiliary system H_{B}.

Hellinger distance

- p, q - distributions on $\{1, \ldots, N\}$

$$
d_{H}(p, q)=\sqrt{\sum_{i=1}^{N}(\sqrt{p(i)}-\sqrt{q(i)})^{2}}
$$

-

$$
d_{T V}(p, q) \leq \sqrt{2} d_{H}(p, q)
$$

Theorem (A. 2016)

If $t, d_{B} \geq C / \varepsilon^{2}$ and U_{1}, \ldots, U_{d} are i.i.d. random unitaries, then with high probability

$$
\max _{|x|=1} \sqrt{\frac{1}{t} \sum_{k=1}^{t} d_{H}\left(p_{U_{k} x}^{A}, \operatorname{unif}\left(\left[d_{A}\right]\right)\right)^{2}} \leq \varepsilon
$$

Theorem (A. 2016)

If $t, d_{B} \geq C / \varepsilon^{2}$ and U_{1}, \ldots, U_{d} are i.i.d. random unitaries, then with high probability

$$
\max _{|x|=1} \sqrt{\frac{1}{t} \sum_{k=1}^{t} d_{H}\left(p_{U_{k} x}^{A}, \operatorname{unif}\left(\left[d_{A}\right]\right)\right)^{2}} \leq \varepsilon
$$

- Adapting G. Schechtman's proof of (Gaussian) Dvoretzky theorem to random unitary matrices.
- $x \mapsto \sqrt{\frac{1}{t} \sum_{k=1}^{t} d_{H}\left(p_{U_{k} x}^{A}, \text { unif }\left(\left[d_{A}\right]\right)\right)^{2}}$ is subgaussian
- Comparison with a Gaussian process via the Majorizing measure theorem
- A byproduct: improved dependence on ε in Dvoretzky thm. for $\ell_{1}^{n}\left(\ell_{2}^{m}\right)$.
- Weaker conditions on t if restricting x to a subset,
- $t=1$ is enough for separable states $x=x_{A} \otimes x_{B}$ (Applications to Quantum Data Hiding).

Thank you

