Elementary Polytopes, their Lift-and-Project Ranks and Integrality Gaps

Yu Hin (Gary) Au Levent Tunçel
Dept. of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo

November 6, 2015

We have A and b given, describing a nonempty polytope

$$
P:=\left\{x \in \mathbb{R}^{d}: A x \leq b, 0 \leq x \leq \bar{e}\right\}
$$

We have A and b given, describing a nonempty polytope

$$
P:=\left\{x \in \mathbb{R}^{d}: A x \leq b, 0 \leq x \leq \bar{e}\right\} .
$$

We are interested in 0,1 vectors in P :

$$
P_{I}:=\operatorname{conv}\left(P \cap\{0,1\}^{d}\right)
$$

We will consider operators Γ that take a compact convex set $C_{k} \subseteq[0,1]^{d}$ and return a compact convex set C_{k+1} such that

We will consider operators Γ that take a compact convex set $C_{k} \subseteq[0,1]^{d}$ and return a compact convex set C_{k+1} such that -

$$
C_{k} \cap\{0,1\}^{d} \subseteq C_{k+1}:=\Gamma\left(C_{k}\right) \subseteq C_{k}
$$

We will consider operators Γ that take a compact convex set $C_{k} \subseteq[0,1]^{d}$ and return a compact convex set C_{k+1} such that -

$$
C_{k} \cap\{0,1\}^{d} \subseteq C_{k+1}:=\Gamma\left(C_{k}\right) \subseteq C_{k},
$$

-

$$
C_{k+1} \neq C_{k} \text { unless } C_{k}=\operatorname{conv}\left(C_{k} \cap\{0,1\}^{d}\right)
$$

Note that the given system of polynomial equations and inequalities is:

$$
A x \leq b, \quad 0 \leq x \leq \bar{e}
$$

Note that the given system of polynomial equations and inequalities is:

$$
\begin{gathered}
A x \leq b, \quad 0 \leq x \leq \bar{e}, \\
x_{j}^{2}-x_{j}=0, \quad \forall j \in\{1,2, \ldots, d\} .
\end{gathered}
$$

$$
P:=\left\{x \in \mathbb{R}^{d}: A x \leq b, 0 \leq x \leq \bar{e}\right\} .
$$

$$
P:=\left\{x \in \mathbb{R}^{d}: A x \leq b, 0 \leq x \leq \bar{e}\right\} .
$$

We are interested in 0,1 vectors in P :

$$
P_{l}:=\operatorname{conv}\left(P \cap\{0,1\}^{d}\right) .
$$

$$
P:=\left\{x \in \mathbb{R}^{d}: A x \leq b, 0 \leq x \leq \bar{e}\right\} .
$$

We are interested in 0,1 vectors in P :

$$
P_{l}:=\operatorname{conv}\left(P \cap\{0,1\}^{d}\right) .
$$

$$
B C C_{(j)}(P):=\operatorname{conv}\left\{\left(P \cap\left\{x: x_{j}=0\right\}\right) \cup\left(P \cap\left\{x: x_{j}=1\right\}\right)\right\},
$$

$$
P:=\left\{x \in \mathbb{R}^{d}: A x \leq b, 0 \leq x \leq \bar{e}\right\}
$$

We are interested in 0,1 vectors in P :

$$
P_{l}:=\operatorname{conv}\left(P \cap\{0,1\}^{d}\right) .
$$

$$
B C C_{(j)}(P):=\operatorname{conv}\left\{\left(P \cap\left\{x: x_{j}=0\right\}\right) \cup\left(P \cap\left\{x: x_{j}=1\right\}\right)\right\}
$$

where $j \in\{1,2, \ldots, d\}$. Since the inclusions

$$
P_{I} \subseteq B C C_{(j)}(P) \subseteq P
$$

are clear for every j,

$$
P:=\left\{x \in \mathbb{R}^{d}: A x \leq b, 0 \leq x \leq \bar{e}\right\}
$$

We are interested in 0,1 vectors in P :

$$
P_{l}:=\operatorname{conv}\left(P \cap\{0,1\}^{d}\right)
$$

$$
B C C_{(j)}(P):=\operatorname{conv}\left\{\left(P \cap\left\{x: x_{j}=0\right\}\right) \cup\left(P \cap\left\{x: x_{j}=1\right\}\right)\right\}
$$

where $j \in\{1,2, \ldots, d\}$. Since the inclusions

$$
P_{I} \subseteq B C C_{(j)}(P) \subseteq P
$$

are clear for every j, it makes sense to consider applying this operator iteratively, each time for a new index j.

Let us define

$$
J:=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} \subseteq\{1,2, \ldots, d\}
$$

Let us define

$$
J:=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} \subseteq\{1,2, \ldots, d\} .
$$

Let us denote

$$
B C C_{(J)}(P):=B C C_{\left(j_{k}\right)}\left(B C C_{\left(j_{k-1}\right)}\left(\cdots B C C_{\left(j_{1}\right)}(P) \cdots\right)\right)
$$

Let us define

$$
J:=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} \subseteq\{1,2, \ldots, d\}
$$

Let us denote

$$
B C C_{(J)}(P):=B C C_{\left(j_{k}\right)}\left(B C C_{\left(j_{k-1}\right)}\left(\cdots B C C_{\left(j_{1}\right)}(P) \cdots\right)\right)
$$

It is easy to check that in the above context, the operators $B C C_{(j)}$ commute with each other.

Let us define

$$
J:=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} \subseteq\{1,2, \ldots, d\}
$$

Let us denote

$$
B C C_{(J)}(P):=B C C_{\left(j_{k}\right)}\left(B C C_{\left(j_{k-1}\right)}\left(\cdots B C C_{\left(j_{1}\right)}(P) \cdots\right)\right)
$$

It is easy to check that in the above context, the operators $B C C_{(j)}$ commute with each other.
Therefore, the notation $B C C_{(J)}(\cdot)$ is justified.

A beautiful, fundamental property of these operators is:

Lemma

For every $J \subseteq\{1,2, \ldots, d\}$, we have

$$
B C C_{(J)}(P)=\operatorname{conv}\left(P \cap\left\{x: x_{j} \in\{0,1\}, \forall j \in J\right\}\right)
$$

A beautiful, fundamental property of these operators is:

Lemma

For every $J \subseteq\{1,2, \ldots, d\}$, we have

$$
B C C_{(J)}(P)=\operatorname{conv}\left(P \cap\left\{x: x_{j} \in\{0,1\}, \forall j \in J\right\}\right)
$$

The lemma directly leads to the convergence theorem.

A beautiful, fundamental property of these operators is:

Lemma

For every $J \subseteq\{1,2, \ldots, d\}$, we have

$$
B C C_{(J)}(P)=\operatorname{conv}\left(P \cap\left\{x: x_{j} \in\{0,1\}, \forall j \in J\right\}\right)
$$

The lemma directly leads to the convergence theorem.
Theorem
(Balas [1974]) Let P be as above. Then

$$
B C C_{(\{1,2, \ldots, d\})}(P)=P_{I} .
$$

Figure: Various properties of lift-and-project operators (Au and T. [2011, 2013]).

Figure: An illustration of several restricted reverse dominance results (dashed arrows) Au and T. [2013, 2015].

Lovász and Schrijver [1991] proposed:

$$
\begin{aligned}
M_{0}(K):=\left\{Y \in \mathbb{R}^{(d+1) \times(d+1)}:\right. & Y e_{0}=Y^{\top} e_{0}=\operatorname{diag}(Y), \\
& Y e_{i} \in K, Y\left(e_{0}-e_{i}\right) \in K, \\
& \forall i \in\{1,2, \ldots, d\}\}
\end{aligned}
$$

Lovász and Schrijver [1991] proposed:

$$
\begin{aligned}
& M_{0}(K):=\left\{Y \in \mathbb{R}^{(d+1) \times(d+1)}: \quad\right. Y e_{0}=Y^{\top} e_{0}=\operatorname{diag}(Y), \\
& Y e_{i} \in K, Y\left(e_{0}-e_{i}\right) \in K, \\
&\forall i \in\{1,2, \ldots, d\}\} \\
& \\
& \operatorname{LS}_{0}(K):=\left\{Y e_{0}: Y \in M_{0}(K)\right\} .
\end{aligned}
$$

Tighter,

$$
M(K):=M_{0}(K) \cap \mathbb{S}^{d+1}
$$

Tighter,

$$
\begin{aligned}
& M(K):=M_{0}(K) \cap \mathbb{S}^{d+1}, \\
& \operatorname{LS}(K):=\left\{Y e_{0}: Y \in M(K)\right\} .
\end{aligned}
$$

and tighter,

$$
M_{+}(K):=M_{0}(K) \cap \mathbb{S}_{+}^{d+1},
$$

and tighter,

$$
\begin{aligned}
M_{+}(K) & :=M_{0}(K) \cap \mathbb{S}_{+}^{d+1} \\
L S S_{+}(K) & :=\left\{Y e_{0}: Y \in M_{+}(K)\right\}
\end{aligned}
$$

Let K be as above. Then

$$
K_{I} \subseteq \mathrm{LS}_{+}(K) \subseteq \mathrm{LS}(K) \subseteq \mathrm{LS}_{0}(K) \subseteq K
$$

Theorem
(Lovász and Schrijver [1991]) Let P be as above. Then

$$
P \supseteq \mathrm{LS}_{0}(P) \supseteq \mathrm{LS}_{0}^{2}(P) \supseteq \cdots \supseteq \mathcal{L} S_{0}^{d}(P)=P_{l}
$$

Similarly for $L S$ as well as $L S_{+}$.

Moreover, the relaxations obtained after a few iterations are still tractable if the original relaxation P is.

Moreover, the relaxations obtained after a few iterations are still tractable if the original relaxation P is.

Theorem

(Lovász and Schrijver [1991]) Let P be as above. If we have a polynomial time weak separation oracle for P then we can optimize any linear function over any of $L S_{0}^{k}(P), L S^{k}(P), L S_{+}^{k}(P)$ in polynomial time, provided $k=O(1)$.

Moreover, the relaxations obtained after a few iterations are still tractable if the original relaxation P is.

Theorem

(Lovász and Schrijver [1991]) Let P be as above. If we have a polynomial time weak separation oracle for P then we can optimize any linear function over any of $L S_{0}^{k}(P), L S^{k}(P), L S_{+}^{k}(P)$ in polynomial time, provided $k=O(1)$.

There is a wide spectrum of lift-and-project type operators: Balas [1974], Sherali and Adams [1990], Lovász and Schrijver [1991], Balas, Ceria and Cornuéjols [1993], Kojima and T. [2000], Lasserre [2001], de Klerk and Pasechnik [2002], Parrilo [2003], Bienstock and Zuckerberg [2004].

Such a general method (it applies to every combinatorial optimization problem)...

Such a general method (it applies to every combinatorial optimization problem)...
Can it be really good on any problem?

Let $G=(V, E)$ be an undirected graph.
We define the fractional stable set polytope as

$$
\operatorname{FRAC}(G):=\left\{x \in[0,1]^{V}: x_{i}+x_{j} \leq 1 \text { for all }\{i, j\} \in E\right\}
$$

This polytope is used as the initial approximation to the convex hull of incidence vectors of the stable sets of G, which is called the stable set polytope:

$$
\operatorname{STAB}(G):=\operatorname{conv}\left(\operatorname{FRAC}(G) \cap\{0,1\}^{v}\right) .
$$

Let us define the class of odd-cycle inequalities. Let \mathcal{H} be the node set of an odd-cycle in G then the inequality

$$
\sum_{i \in \mathcal{H}} x_{i} \leq \frac{|\mathcal{H}|-1}{2}
$$

is valid for $\operatorname{STAB}(G)$. We define
$\mathrm{OC}(G):=\{x \in \operatorname{FRAC}(G): x$ satisfies all odd-cycle constraints for $G\}$.

If \mathcal{H} is an odd-anti-hole then the inequality

$$
\sum_{i \in \mathcal{H}} x_{i} \leq 2
$$

is valid for $\operatorname{STAB}(G)$.

If we have an odd-wheel in G with hub node represented by $x_{2 k+2}$ and the rim nodes represented by $x_{1}, x_{2}, \ldots, x_{2 k+1}$, then the odd-wheel inequality

$$
k x_{2 k+2}+\sum_{i=1}^{2 k+1} x_{i} \leq k
$$

is valid for $\operatorname{STAB}(G)$.

Based on these classes of inequalities we define the polytopes OC(G), $\operatorname{ANTI-HOLE}(G), \operatorname{WHEEL}(G)$.

Theorem

(Lovász and Schrijver [1991]) For every graph G,

$$
\mathrm{LS}_{0}(G)=\mathrm{LS}(G)=\mathrm{OC}(G)
$$

Theorem

(Lovász and Schrijver [1991]) For every graph G,

$$
\mathrm{LS}_{0}(G)=\mathrm{LS}(G)=\mathrm{OC}(G)
$$

Note that this theorem provides a compact lifted representations of the odd-cycle polytope of G (in the spaces $\mathbb{R}(\{0\} \cup V) \times(\{0\} \cup V)$ and $\mathbb{S}\{0\} \cup V)$. This polytope can have exponentially many facets in the worst case.

Theorem

(Lovász and Schrijver [1991]) For every graph G,

$$
\mathrm{LS}_{0}(G)=\mathrm{LS}(G)=\mathrm{OC}(G)
$$

Note that this theorem provides a compact lifted representations of the odd-cycle polytope of G (in the spaces $\mathbb{R}^{(\{0\} \cup V) \times(\{0\} \cup V)}$ and $\mathbb{S}\{0\} \cup V)$. This polytope can have exponentially many facets in the worst case.
However, $M(G)$ is represented by
$|V|(|V|+1) / 2$ variables and $O\left(|V|^{3}\right)$ linear inequalities.

What about $\operatorname{LS}_{0}^{2}(G), \mathrm{LS}^{2}(G)$?

What about $\operatorname{LS}_{0}^{2}(G), \operatorname{LS}^{2}(G)$?
There exist graphs G for which

$$
\operatorname{LS}_{0}^{2}(G) \neq \mathrm{LS}^{2}(G) \mathrm{Au} \text { and } \mathrm{T} .[2009] .
$$

What about $\operatorname{LS}_{0}^{2}(G), \operatorname{LS}^{2}(G)$?
There exist graphs G for which

$$
\operatorname{LS}_{0}^{2}(G) \neq \mathrm{LS}^{2}(G) \mathrm{Au} \text { and } \mathrm{T} .[2009] .
$$

Open Problem: Give good combinatorial characterizations for $\mathrm{LS}_{0}^{2}(G)$ and $\mathrm{LS}^{2}(G)$.

What about $\operatorname{LS}_{0}^{2}(G), \operatorname{LS}^{2}(G)$?
There exist graphs G for which

$$
\operatorname{LS}_{0}^{2}(G) \neq \mathrm{LS}^{2}(G) \mathrm{Au} \text { and } \mathrm{T} .[2009] .
$$

Open Problem: Give good combinatorial characterizations for $\mathrm{LS}_{0}^{2}(G)$ and $\mathrm{LS}^{2}(G)$.

Some partial results by Lipták [1999]

What about $\operatorname{LS}_{0}^{2}(G), \operatorname{LS}^{2}(G)$?
There exist graphs G for which

$$
\operatorname{LS}_{0}^{2}(G) \neq \mathrm{LS}^{2}(G) \mathrm{Au} \text { and } \mathrm{T} .[2009] .
$$

Open Problem: Give good combinatorial characterizations for $\mathrm{LS}_{0}^{2}(G)$ and $\mathrm{LS}^{2}(G)$.

Some partial results by Lipták [1999] and by Lipták and T. [2003].

A clique in G is a subset of nodes in G so that every pair of them are joined by an edge. The clique polytope of G is defined by

$$
\mathrm{CLQ}(G):=\left\{x \in \mathbb{R}_{+}^{V}: \sum_{j \in C} x_{j} \leq 1 \text { for every clique } C \text { in } G\right\}
$$

A clique in G is a subset of nodes in G so that every pair of them are joined by an edge. The clique polytope of G is defined by

$$
\mathrm{CLQ}(G):=\left\{x \in \mathbb{R}_{+}^{V}: \sum_{j \in C} x_{j} \leq 1 \text { for every clique } C \text { in } G\right\}
$$

Optimizing a linear function over $\operatorname{FRAC}(G)$ is easy!

A clique in G is a subset of nodes in G so that every pair of them are joined by an edge. The clique polytope of G is defined by

$$
\mathrm{CLQ}(G):=\left\{x \in \mathbb{R}_{+}^{V}: \sum_{j \in C} x_{j} \leq 1 \text { for every clique } C \text { in } G\right\}
$$

Optimizing a linear function over $\operatorname{FRAC}(G)$ is easy! Linear optimization over $\operatorname{CLQ}(G)$ (and $\operatorname{STAB}(G))$ is $\mathcal{N} \mathcal{P}$-hard!

Orthonormal Representations of Graphs and the Theta Body of $G:=(V, E)$

Orthonormal Representations of Graphs and the Theta Body of $G:=(V, E)$
$u^{(1)}, u^{(2)}, \ldots, u^{(|V|)} \in \mathbb{R}^{d}$ such that

$$
\left\langle u^{(i)}, u^{(j)}\right\rangle=0, \text { for all } i \neq j,\{i, j\} \notin E,
$$

and

$$
\left\langle u^{(i)}, u^{(i)}\right\rangle=1, \quad \text { for all } i \in V
$$

$\mathrm{TH}(G):=\left\{x \in \mathbb{R}_{+}^{|V|}: \sum_{i \in V}\left(c^{T} u^{(i)}\right)^{2} x_{i} \leq 1\right.$,
\forall ortho. representations and $c \in \mathbb{R}^{d}$ s.t. $\left.\|c\|_{2}=1\right\}$
$\begin{aligned} \mathrm{TH}(G):= & \left\{x \in \mathbb{R}_{+}^{|V|}: \sum_{i \in V}\left(c^{T} u^{(i)}\right)^{2} x_{i} \leq 1,\right. \\ & \left.\forall \text { ortho. representations and } c \in \mathbb{R}^{d} \text { s.t. }\|c\|_{2}=1\right\}\end{aligned}$
$\mathrm{TH}(G) \supseteq \operatorname{STAB}(G)$
$\begin{aligned} \mathrm{TH}(G):= & \left\{x \in \mathbb{R}_{+}^{|V|}: \sum_{i \in V}\left(c^{T} u^{(i)}\right)^{2} x_{i} \leq 1,\right. \\ & \left.\forall \text { ortho. representations and } c \in \mathbb{R}^{d} \text { s.t. }\|c\|_{2}=1\right\}\end{aligned}$
$\mathrm{TH}(G) \supseteq \operatorname{STAB}(G)$
but infinitely many linear inequalities!

Theorem
 Let $G=(V, E)$. Then TFAE
 (i) G is perfect

Theorem

Let $G=(V, E)$. Then TFAE
(i) G is perfect
(ii) $\mathrm{TH}(G)$ is a polytope

Theorem

Let $G=(V, E)$. Then TFAE
(i) G is perfect
(ii) $\mathrm{TH}(G)$ is a polytope
(iii) $\mathrm{TH}(G)=\operatorname{CLQ}(G)$

Theorem

Let $G=(V, E)$. Then TFAE
(i) G is perfect
(ii) $\mathrm{TH}(G)$ is a polytope
(iii) $\mathrm{TH}(G)=\mathrm{CLQ}(G)$
(iv) $\operatorname{STAB}(G)=\operatorname{CLQ}(G)$

Theorem

Let $G=(V, E)$. Then TFAE
(i) G is perfect
(ii) $\mathrm{TH}(G)$ is a polytope
(iii) $\mathrm{TH}(G)=\mathrm{CLQ}(G)$
(iv) $\operatorname{STAB}(G)=\operatorname{CLQ}(G)$
(v) G does not contain an odd-hole or odd anti-hole

Theorem

Let $G=(V, E)$. Then TFAE
(i) G is perfect
(ii) $\mathrm{TH}(G)$ is a polytope
(iii) $\mathrm{TH}(G)=\mathrm{CLQ}(G)$
(iv) $\operatorname{STAB}(G)=\operatorname{CLQ}(G)$
(v) G does not contain an odd-hole or odd anti-hole
(vi) the ideal generated by $\left\{\left(x_{v}^{2}-x_{v}\right), \forall v \in V ; x_{u} x_{v}, \forall\{u, v\} \in E\right\}$ is $(1,1)$-SoS.

There is a strong connection between $\mathrm{LS}_{+}(G)$ and $\mathrm{TH}(G)$:

There is a strong connection between $\mathrm{LS}_{+}(G)$ and $\mathrm{TH}(G)$:

Theorem

(Lovász and Schrijver [1991]) Let $G=(V, E)$. Then

$$
\begin{aligned}
\mathrm{TH}(G)= & \left\{x \in \mathbb{R}^{V}:\binom{1}{x}=Y e_{0} ; Y_{i j}=0, \forall\{i, j\} \in E ;\right. \\
& \left.Y e_{0}=\operatorname{diag}(Y) ; Y \succeq 0\right\}
\end{aligned}
$$

Theorem

(Lovász and Schrijver [1991]) For every graph G, $L S_{+}(G) \subseteq \mathrm{OC}(G) \cap \operatorname{ANTI-HOLE}(G) \cap \operatorname{WHEEL}(G) \cap \operatorname{CLQ}(G) \cap \mathrm{TH}(G)$.

Theorem
 (Lovász and Schrijver [1991]) For every graph G, $L S_{+}(G) \subseteq O C(G) \cap \operatorname{ANTI-HOLE}(G) \cap \operatorname{WHEEL}(G) \cap \operatorname{CLQ}(G) \cap \mathrm{TH}(G)$.

Open Problem: Give full, elegant, combinatorial characterizations for $\mathrm{LS}_{+}(G)$.

Is $L S_{+}(G)$ polyhedral for every G ?

Is $L S_{+}(G)$ polyhedral for every G ?

Let $G_{\alpha \beta}$ be the graph in the following figure:

Is $L S_{+}(G)$ polyhedral for every G ?

Let $G_{\alpha \beta}$ be the 8 -node graph in the following figure, on the board:

A two dimensional cross-section of the compact convex relaxation $\mathrm{LS}_{+}\left(G_{\alpha \beta}\right)$ has a nonpolyhedral piece on its boundary. We say that $z \in \mathbb{R}^{8}$ is an $\alpha \beta$-point, if α and β are both nonnegative and $z_{i}:=\left\{\begin{array}{lll}\alpha & \text { if } i \in\{1,2,3,4\} \text {, } \\ \beta & \text { if } \quad i \in\{5,6,7,8\} .\end{array}\right.$

A two dimensional cross-section of the compact convex relaxation $\mathrm{LS}_{+}\left(G_{\alpha \beta}\right)$ has a nonpolyhedral piece on its boundary. We say that $z \in \mathbb{R}^{8}$ is an $\alpha \beta$-point, if α and β are both nonnegative and $z_{i}:=\left\{\begin{array}{lll}\alpha & \text { if } i \in\{1,2,3,4\}, \\ \beta & \text { if } & i \in\{5,6,7,8\} .\end{array}\right.$

Theorem

(Bianchi, Escalante, Nasini, T. [2014]) An $\alpha \beta$-point with
$\frac{1}{4} \leq \alpha \leq \frac{1}{2}$ belongs to $\mathrm{LS}_{+}\left(G_{\alpha \beta}\right)$ if and only if
$\beta \leq \frac{3-\sqrt{1+8(-1+4 \alpha)^{2}}}{8}$.

The SDP relaxation $\mathrm{LS}_{+}(G)$ of $\operatorname{STAB}(G)$ is stronger than $\operatorname{TH}(G)$.

The SDP relaxation $\mathrm{LS}_{+}(G)$ of $\operatorname{STAB}(G)$ is stronger than $\operatorname{TH}(G)$. By following the same line of reasoning used for perfect graphs, MWSSP can be solved in polynomial time for the class of graphs for which $\mathrm{LS}_{+}(G)=\operatorname{STAB}(G)$.

The SDP relaxation $\mathrm{LS}_{+}(G)$ of $\operatorname{STAB}(G)$ is stronger than $\operatorname{TH}(G)$. By following the same line of reasoning used for perfect graphs, MWSSP can be solved in polynomial time for the class of graphs for which $\mathrm{LS}_{+}(G)=\operatorname{STAB}(G)$.

We call these LS_{+}-perfect graphs.

If G^{\prime} is a node-induced subgraph of $G\left(G^{\prime} \subseteq G\right)$, we consider every point in $\operatorname{STAB}\left(G^{\prime}\right)$ as a set of points in $\operatorname{STAB}(G)$, although they do not belong to the same space

If G^{\prime} is a node-induced subgraph of $G\left(G^{\prime} \subseteq G\right)$, we consider every point in $\operatorname{STAB}\left(G^{\prime}\right)$ as a set of points in $\operatorname{STAB}(G)$, although they do not belong to the same space (for the missing nodes, we take direct sums with the interval $[0,1]$, since originally $\left.\operatorname{STAB}(G) \subseteq \operatorname{STAB}\left(G^{\prime}\right) \oplus[0,1]^{V(G) \backslash V\left(G^{\prime}\right)}\right)$.

If G^{\prime} is a node-induced subgraph of $G\left(G^{\prime} \subseteq G\right)$, we consider every point in $\operatorname{STAB}\left(G^{\prime}\right)$ as a set of points in $\operatorname{STAB}(G)$, although they do not belong to the same space (for the missing nodes, we take direct sums with the interval $[0,1]$, since originally $\left.\operatorname{STAB}(G) \subseteq \operatorname{STAB}\left(G^{\prime}\right) \oplus[0,1]^{V(G) \backslash V\left(G^{\prime}\right)}\right)$.
With this notation, given any family of graphs \mathcal{F} and a graph G, we denote by $\mathcal{F}(G)$ the relaxation of $\operatorname{STAB}(G)$ defined by

If G^{\prime} is a node-induced subgraph of $G\left(G^{\prime} \subseteq G\right)$, we consider every point in $\operatorname{STAB}\left(G^{\prime}\right)$ as a set of points in $\operatorname{STAB}(G)$, although they do not belong to the same space (for the missing nodes, we take direct sums with the interval $[0,1]$, since originally $\left.\operatorname{STAB}(G) \subseteq \operatorname{STAB}\left(G^{\prime}\right) \oplus[0,1]^{V(G) \backslash V\left(G^{\prime}\right)}\right)$.
With this notation, given any family of graphs \mathcal{F} and a graph G, we denote by $\mathcal{F}(G)$ the relaxation of $\operatorname{STAB}(G)$ defined by

$$
\mathcal{F}(G):=\bigcap_{G^{\prime} \subseteq G ; G^{\prime} \in \mathcal{F}} \operatorname{STAB}\left(G^{\prime}\right)
$$

A graph is called near-bipartite if after deleting the closed neighborhood of any node, the resulting graph is bipartite. Let us denote by NB the class of all near-bipartite graphs. For every graph G,

- $\mathrm{LS}_{+}(G) \subseteq \mathrm{NB}(G)$ and

A graph is called near-bipartite if after deleting the closed neighborhood of any node, the resulting graph is bipartite. Let us denote by NB the class of all near-bipartite graphs.
For every graph G,

- $L S_{+}(G) \subseteq \mathrm{NB}(G)$ and
- $\operatorname{NB}(G) \subseteq \operatorname{CLQ}(G) \cap \mathrm{OC}(G) \cap \operatorname{ANTI-HOLE}(G) \cap \operatorname{WHEEL}(G)$.

Recall:

Recall:

If G^{\prime} is a node-induced subgraph of $G\left(G^{\prime} \subseteq G\right)$, we consider every point in $\operatorname{STAB}\left(G^{\prime}\right)$ as a point in $\operatorname{STAB}(G)$, although they do not belong to the same space (for the missing nodes, we take direct sums with the interval $[0,1]$, since originally $\left.\operatorname{STAB}(G) \subseteq \operatorname{STAB}\left(G^{\prime}\right) \oplus[0,1]^{V(G) \backslash V\left(G^{\prime}\right)}\right)$. With this notation, given any family of graphs \mathcal{F} and a graph G, we denote by $\mathcal{F}(G)$ the relaxation of $\operatorname{STAB}(G)$ defined by

$$
\mathcal{F}(G):=\bigcap_{G^{\prime} \subseteq G ; G^{\prime} \in \mathcal{F}} \operatorname{STAB}\left(G^{\prime}\right) .
$$

Open Problem: Find a combinatorial characterization of LS_{+}-perfect graphs.

Open Problem: Find a combinatorial characterization of LS ${ }_{+}$-perfect graphs.

Current best characterization (Bianchi, Escalante, Nasini, T. [2014])

$$
\mathrm{LS}_{+}(G) \subseteq \mathrm{NB}(G) \cap \hat{\mathrm{TH}}(G)
$$

What is the smallest graph which is LS_{+}-imperfect?

In a related context, Knuth (1993) asked what is the smallest graph for which $\operatorname{STAB}(G) \neq \mathrm{LS}_{+}(G)$?

Figure: Little graph that could! G_{2} with corresponding weights

Proposition

(Lipták, T., 2003) G_{2} is the smallest graph for which $L^{2}(G) \neq \operatorname{STAB}(G)$.

The LS-rank of P is the smallest k for which $\mathrm{LS}^{k}(P)=P_{l}$. Analogously, $\mathrm{LS}_{0}-$ rank of P, LS_{+}-rank of P_{I} relative to $P \ldots$ We denote these ranks by $r(G), r_{0}(G)$, and $r_{+}(G)$, respectively.

Theorem

(Lipták, T. [2003]) For every graph $G=(V, E), r_{+}(G) \leq\left\lfloor\frac{|V|}{3}\right\rfloor$.

$$
n_{+}(k):=\min \left\{|V(G)|: r_{+}(G)=k\right\} .
$$

Open Problem: What are the values of $n_{+}(k)$ for every $k \in \mathbb{Z}_{+}$? In particular, Conjecture (Lipták, T. [2003]): Is it true that $n_{+}(k)=3 k$ for all $k \in \mathbb{Z}_{+}$?

$$
n_{+}(k):=\min \left\{|V(G)|: r_{+}(G)=k\right\} .
$$

Open Problem: What are the values of $n_{+}(k)$ for every $k \in \mathbb{Z}_{+}$? In particular,
Conjecture (Lipták, T. [2003]): Is it true that $n_{+}(k)=3 k$ for all $k \in \mathbb{Z}_{+}$?

$$
n_{+}(k):=\min \left\{|V(G)|: r_{+}(G)=k\right\} .
$$

Open Problem: What are the values of $n_{+}(k)$ for every $k \in \mathbb{Z}_{+}$? In particular,
Conjecture (Lipták, T. [2003]): Is it true that $n_{+}(k)=3 k$ for all $k \in \mathbb{Z}_{+}$?
$k=1$ (triangle is the answer);

$$
n_{+}(k):=\min \left\{|V(G)|: r_{+}(G)=k\right\} .
$$

Open Problem: What are the values of $n_{+}(k)$ for every $k \in \mathbb{Z}_{+}$? In particular,
Conjecture (Lipták, T. [2003]): Is it true that $n_{+}(k)=3 k$ for all $k \in \mathbb{Z}_{+}$?
$k=1$ (triangle is the answer);
$k=2$ the above graph G_{2} is the answer;

$$
n_{+}(k):=\min \left\{|V(G)|: r_{+}(G)=k\right\} .
$$

Open Problem: What are the values of $n_{+}(k)$ for every $k \in \mathbb{Z}_{+}$? In particular,
Conjecture (Lipták, T. [2003]): Is it true that $n_{+}(k)=3 k$ for all $k \in \mathbb{Z}_{+}$?
$k=1$ (triangle is the answer);
$k=2$ the above graph G_{2} is the answer;
$k=3$, Escalante, Montelar, Nasini (2006);

$$
n_{+}(k):=\min \left\{|V(G)|: r_{+}(G)=k\right\} .
$$

Open Problem: What are the values of $n_{+}(k)$ for every $k \in \mathbb{Z}_{+}$? In particular,
Conjecture (Lipták, T. [2003]): Is it true that $n_{+}(k)=3 k$ for all $k \in \mathbb{Z}_{+}$?
$k=1$ (triangle is the answer);
$k=2$ the above graph G_{2} is the answer;
$k=3$, Escalante, Montelar, Nasini (2006);
$k=4$?

What about the polyhedral graph ranks?

What about the polyhedral graph ranks?

Conjecture (Lipták, T. [2003]): $r_{0}(G)=r(G) \quad \forall$ graphs G.

What about the polyhedral graph ranks?

Conjecture (Lipták, T. [2003]): $r_{0}(G)=r(G) \quad \forall$ graphs G.

True for:

What about the polyhedral graph ranks?

Conjecture (Lipták, T. [2003]): $r_{0}(G)=r(G) \quad \forall$ graphs G.

True for:
bipartite graphs, series-parallel graphs, perfect graphs and odd-star-subdivisions of graphs in \mathcal{B} (which contains cliques and wheels, among many other graphs), antiholes and graphs that have N_{0}-rank ≤ 2. Also true for all 8-node graphs, and for 9-node graphs that contain a 7 -hole or a 7 -antihole as an induced subgraph Au [2008].

Other lower bound results: Stephen and T. [1999], Cook and Dash [2000], Goemans and T. [2001], Laurent [2002], Laurent [2003], Aguilera, Bianchi and Nasini [2004], Escalante, Montelar and Nasini [2006], Arora, Bollobás, Lovász and Tourlakis [2006], Cheung [2007], Georgiou, Magen, Pitassi, Tourlakis [2007], Schoeneback, Trevisan and Tulsiani [2007], Charikar, Makarychev and Makarychev [2009], Mathieu and Sinclair [2009], Raghavendra and Steurer [2009], Benabbas and Magen [2010], Karlin, Mathieu and Thach Nguyen [2010], Chan, Lee, Raghavendra and Steurer [2013]. Many of the lower bound proofs have been unified/generalized: Hong and T. [2008].
Other work on convex relaxation methods on the stable set problem: de Klerk and Pasechnik [2002], Peña, Vera and Zuluaga [2008], ...

Other lower bound results: Stephen and T. [1999], Cook and Dash [2000], Goemans and T. [2001], Laurent [2002], Laurent [2003], Aguilera, Bianchi and Nasini [2004], Escalante, Montelar and Nasini [2006], Arora, Bollobás, Lovász and Tourlakis [2006], Cheung [2007], Georgiou, Magen, Pitassi, Tourlakis [2007], Schoeneback, Trevisan and Tulsiani [2007], Charikar, Makarychev and Makarychev [2009], Mathieu and Sinclair [2009], Raghavendra and Steurer [2009], Benabbas and Magen [2010], Karlin, Mathieu and Thach Nguyen [2010], Chan, Lee, Raghavendra and Steurer [2013]. Many of the lower bound proofs have been unified/generalized: Hong and T. [2008].
Other work on convex relaxation methods on the stable set problem: de Klerk and Pasechnik [2002], Peña, Vera and Zuluaga [2008], ...

Stronger "lower bound" results via study of extended complexity.

Figure: Various properties of lift-and-project operators (Au and T. [2011, 2013]).

Denote $\{0,1\}^{d}$ by \mathcal{F}. Define $\mathcal{A}:=2^{\mathcal{F}}$. For each $x \in \mathcal{F}$, we define the vector $x^{\mathcal{A}} \in \mathbb{R}^{\mathcal{A}}$ such that

$$
x_{\alpha}^{\mathcal{A}}= \begin{cases}1, & \text { if } x \in \alpha \\ 0, & \text { otherwise }\end{cases}
$$

For any given $x \in \mathcal{F}$, if we define $Y_{\mathcal{A}}^{x}:=x^{\mathcal{A}}\left(x^{\mathcal{A}}\right)^{T}$, then, the following must hold:

- $Y_{\mathcal{A}}^{x} e_{0}=\left(Y_{\mathcal{A}}^{x}\right)^{T} e_{0}=\operatorname{diag}\left(Y_{\mathcal{A}}^{x}\right)=x^{\mathcal{A}}$;
- $Y_{\mathcal{A}}^{x} e_{\alpha} \in\left\{0, x^{\mathcal{A}}\right\}, \forall \alpha \in \mathcal{A}$;
- $Y_{\mathcal{A}}^{\times} \in \mathbb{S}_{+}^{\mathcal{A}}$;
- $Y_{\mathcal{A}}^{\times}[\alpha, \beta]=1 \Longleftrightarrow x \in \alpha \cap \beta$;
- If $\alpha_{1} \cap \beta_{1}=\alpha_{2} \cap \beta_{2}$, then $Y_{\mathcal{A}}^{\times}\left[\alpha_{1}, \beta_{1}\right]=Y_{\mathcal{A}}^{\times}\left[\alpha_{2}, \beta_{2}\right]$.

Given $S \subseteq[d]$ and $t \in\{0,1\}$, we define

$$
\left.S\right|_{t}:=\left\{x \in \mathcal{F}: x_{i}=t, \forall i \in S\right\}
$$

For any integer $i \in[0, d]$, define

$$
\mathcal{A}_{i}:=\left\{\left.\left.S\right|_{1} \cap T\right|_{0}: S, T \subseteq[n], S \cap T=\emptyset,|S|+|T| \leq i\right\}
$$

and

$$
\mathcal{A}_{i}^{+}:=\left\{\left.S\right|_{1}: S \subseteq[d],|S| \leq i\right\}
$$

(1) Let $\tilde{S A}^{k}(P)$ denote the set of matrices $Y \in \mathbb{R}^{\mathcal{A}_{1}^{+} \times \mathcal{A}_{k}}$ that satisfy all of the following conditions:
(SA1) $Y[\mathcal{F}, \mathcal{F}]=1$;
(SA 2) $\hat{x}\left(Y e_{\alpha}\right) \in K(P)$ for every $\alpha \in \mathcal{A}_{k}$;
(SA 3) For each $\left.\left.S\right|_{1} \cap T\right|_{0} \in \mathcal{A}_{k-1}$, impose

$$
Y e_{\left.\left.\right|_{1} \cap T\right|_{0}}=Y e_{S_{\left.\left.\left.\right|_{1} \cap T\right|_{0} \cap j\right|_{1}}}+Y e_{S_{\left.\left.\left.\right|_{1} \cap T\right|_{0} \cap j\right|_{0}}}, \forall j \in[n] \backslash(S \cup T) .
$$

(SA 4) For each $\alpha \in \mathcal{A}_{1}^{+}, \beta \in \mathcal{A}_{k}$ such that $\alpha \cap \beta=\emptyset$, impose

$$
Y[\alpha, \beta]=0 ;
$$

(SA 5) For every $\alpha_{1}, \alpha_{2} \in \mathcal{A}_{1}^{+}, \beta_{1}, \beta_{2} \in \mathcal{A}_{k}$ such that $\alpha_{1} \cap \beta_{1}=\alpha_{2} \cap \beta_{2}$, impose $Y\left[\alpha_{1}, \beta_{1}\right]=Y\left[\alpha_{2}, \beta_{2}\right]$.
(2) Let $\tilde{S A}_{+}^{k}(P)$ denote the set of matrices $Y \in \mathbb{S}_{+}^{\mathcal{A}_{k}}$ that satisfies all of the following conditions:
$\left(S A_{+} 1\right)$ (SA 1), (SA 2) and (SA 3);
$\left(\mathrm{SA}_{+} 2\right)$ For each $\alpha, \beta \in \mathcal{A}_{k}$ such that $\operatorname{conv}(\alpha) \cap \operatorname{conv}(\beta) \cap P=\emptyset$, impose $Y[\alpha, \beta]=0$;
$\left(\mathrm{SA}_{+} 3\right)$ For any $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathcal{A}_{k}$ such that $\alpha_{1} \cap \beta_{1}=\alpha_{2} \cap \beta_{2}$, impose $Y\left[\alpha_{1}, \beta_{1}\right]=Y\left[\alpha_{2}, \beta_{2}\right]$.
(3) Define

$$
\mathrm{SA}^{k}(P):=\left\{x \in \mathbb{R}^{d}: \exists Y \in \tilde{S A}^{k}(P): Y e_{\mathcal{F}}=\hat{x}\right\}
$$

Given $P:=\left\{x \in[0,1]^{d}: A x \leq b\right\}$, and an integer $k \in[d]$,
(1) Let Lás ${ }^{k}(P)$ denote the set of matrices $Y \in \mathbb{S}_{+}^{\mathcal{A}_{k+1}^{+}}$that satisfy all of the following conditions:
(Las 1) $Y[\mathcal{F}, \mathcal{F}]=1$;
(Las2) For each $j \in[m]$, let A^{j} be the $j^{\text {th }}$ row of A. Define the matrix $Y^{j} \in \mathbb{S}^{\mathcal{A}_{k}^{+}}$such that

$$
Y^{j}\left[\left.S\right|_{1},\left.S^{\prime}\right|_{1}\right]:=b_{j} Y\left[\left.S\right|_{1},\left.S^{\prime}\right|_{1}\right]-\sum_{i=1}^{n} A_{i}^{j} Y\left[\left.(S \cup\{i\})\right|_{1},\left.\left(S^{\prime} \cup\{i\}\right)\right|_{1}\right]
$$

and impose $Y^{j} \succeq 0$.
(Las3) For every $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathcal{A}_{k}^{+}$such that $\alpha_{1} \cap \beta_{1}=\alpha_{2} \cap \beta_{2}$, impose $Y\left[\alpha_{1}, \beta_{1}\right]=Y\left[\alpha_{2}, \beta_{2}\right]$.
(2) Define

$$
\operatorname{Las}^{k}(P):=\left\{x \in \mathbb{R}^{d}: \exists Y \in \operatorname{Las}^{k}(P): \hat{x}\left(Y e_{\mathcal{F}}\right)=\hat{x}\right\} .
$$

In our setting, the Las-rank of a polytope P (the smallest k such that $\operatorname{Las}^{k}(P)=P_{l}$) is equal to the Theta-rank, defined by Gouveia, Parrilo, Thomas [2010].

Consider the set

$$
P_{n, \alpha}:=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i} \leq n-\alpha\right\}
$$

Consider the set

$$
P_{n, \alpha}:=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i} \leq n-\alpha\right\}
$$

Theorem

(Au and T. [2015]) Suppose an integer $n \geq 5$ is not a perfect square. Then there exists $\alpha \in(\lfloor\sqrt{n}\rfloor,\lceil\sqrt{n}\rceil)$ such that the $\mathrm{BZ}_{+}^{\prime}-$ rank of $P_{n, \alpha}$ is at least $\left\lfloor\frac{\sqrt{n}+1}{2}\right\rfloor$.

Theorem
(Au and T. [2015]) For every $n \geq 2$, the $S A_{+}$-rank of $P_{n, \alpha}$ is n for all $\alpha \in(0,1)$.

Theorem
($A u$ and T. [2015]) For every $n \geq 2$, the $S A_{+}$-rank of $P_{n, \alpha}$ is n for all $\alpha \in(0,1)$.

Theorem

(Cheung [2007])
(1) For every even integer $n \geq 4$, the Las-rank of $P_{n, \alpha}$ is at most $n-1$ for all $\alpha \geq \frac{1}{n}$;
(2) For every integer $n \geq 2$, there exists $\alpha \in\left(0, \frac{1}{n}\right)$ such that the Las-rank of $P_{n, \alpha}$ is n.

Theorem

($A u$ and T. [2015]) For every $n \geq 2$, the $S A_{+}$-rank of $P_{n, \alpha}$ is n for all $\alpha \in(0,1)$.

Theorem

(Cheung [2007])
(1) For every even integer $n \geq 4$, the Las-rank of $P_{n, \alpha}$ is at most $n-1$ for all $\alpha \geq \frac{1}{n}$;
(2) For every integer $n \geq 2$, there exists $\alpha \in\left(0, \frac{1}{n}\right)$ such that the Las-rank of $P_{n, \alpha}$ is n.

Theorem

(Au and T. [2015]) Suppose $n \geq 2$, and

$$
0<\alpha \leq n\left(\frac{3-\sqrt{5}}{4 n-4}\right)^{n}
$$

Then $P_{n, \alpha}$ has Las-rank n.

Figure: Computational results and upper bounds for $g(n):=\max \left\{\alpha: \operatorname{Las}^{n-1}\left(P_{n, \alpha}\right) \neq\left(P_{n, \alpha}\right)_{l}\right\}$ (Au and T. [2015]).

Figure: Computational results and upper bounds for $g(n):=\max \left\{\alpha: \operatorname{Las}^{n-1}\left(P_{n, \alpha}\right) \neq\left(P_{n, \alpha}\right)_{l}\right\}$ (Au and T. [2015]).

Given $\alpha>0$, we define the set

$$
Q_{n, \alpha}:=\left\{x \in[0,1]^{n}: \sum_{i \in S}\left(1-x_{i}\right)+\sum_{i \notin S} x_{i} \geq \alpha, \forall S \subseteq[n]\right\}
$$

Given $\alpha>0$, we define the set

$$
Q_{n, \alpha}:=\left\{x \in[0,1]^{n}: \sum_{i \in S}\left(1-x_{i}\right)+\sum_{i \notin S} x_{i} \geq \alpha, \forall S \subseteq[n]\right\} .
$$

Theorem

(Au and T. [2015]) Suppose $n \geq 2$, and

$$
0<\alpha \leq\left(\frac{3-\sqrt{5}}{4}\right)^{n}
$$

Then $Q_{n, \alpha}$ has Las-rank n.
$\log _{2}(f(n))$

Figure: Computational results and possible ranges for $f(n):=\max \left\{\alpha: \operatorname{Las}^{n-1}\left(Q_{n-\alpha}\right) \neq \emptyset\right\}$ (Au and T. [2015]).
$\log _{2}(f(n))$

Figure: Computational results and possible ranges for $f(n):=\max \left\{\alpha: \operatorname{Las}^{n-1}\left(Q_{n-\alpha}\right) \neq \emptyset\right\}$ (Au and T. [2015]).

For the complete graph $G:=K_{n}, \operatorname{FRAC}(G)$ has rank 1 with respect to $\mathrm{LS}_{+}, \mathrm{SA}_{+}$and Las operators. However, the rank is known to be $\Theta(n)$ for all other operators that yield only polyhedral relaxations, such as SA and Lovász and Schrijver's LS operator.

For the complete graph $G:=K_{n}, \operatorname{FRAC}(G)$ has rank 1 with respect to $\mathrm{LS}_{+}, \mathrm{SA}_{+}$and Las operators. However, the rank is known to be $\Theta(n)$ for all other operators that yield only polyhedral relaxations, such as SA and Lovász and Schrijver's N operator.

Theorem

(Au and T. [2013]) Suppose G is the complete graph on $n \geq 3$ vertices. Then the BZ '-rank (and the BZ -rank) of $\operatorname{FRAC}(G)$ is between $\left\lceil\frac{n}{2}\right\rceil-2$ or $\left\lceil\frac{n+1}{2}\right\rceil$.

- The convex relaxation methods I discussed can all be phrased so that they are based on polynomial systems of inequalities. This area which is a meeting place for combinatorial optimization, convex optimization and real algebraic geometry continues to be very exciting and vibrant.
- The convex relaxation methods I discussed can all be phrased so that they are based on polynomial systems of inequalities. This area which is a meeting place for combinatorial optimization, convex optimization and real algebraic geometry continues to be very exciting and vibrant.
- There is more to come!
- The convex relaxation methods I discussed can all be phrased so that they are based on polynomial systems of inequalities. This area which is a meeting place for combinatorial optimization, convex optimization and real algebraic geometry continues to be very exciting and vibrant.
- There is more to come!
- How about approaches based on Hilbert's Nullstellensatz? De Loera, Lee, et al. [2008-...]
- The convex relaxation methods I discussed can all be phrased so that they are based on polynomial systems of inequalities. This area which is a meeting place for combinatorial optimization, convex optimization and real algebraic geometry continues to be very exciting and vibrant.
- There is more to come!
- How about approaches based on Hilbert's Nullstellensatz? De Loera, Lee, et al. [2008-...]
- As I said, There is more to come!

Figure: An illustration of several restricted reverse dominance results (dashed arrows) Au and T. [2013, 2015].

