Cutting planes from extended LP formulations

Oktay Günlük
Math Sciences, IBM Research

(joint work with Sanjeeb Dash and Merve Bodur)

November 2015 - Oaxaca Workshop

Extended LP formulations

Consider

$$
P^{I P}=\left\{x \in \mathcal{R}^{n}: A x \leq b, x_{i} \in \mathcal{Z} \quad \text { for } i \in I\right\}
$$

and

$$
Q^{I P}=\left\{(x, s) \in \mathcal{R}^{n} \times \mathcal{R}^{k}: C x+G s \leq d, x_{i} \in \mathcal{Z} \quad \text { for } i \in I\right\}
$$

such that

$$
P^{L P}=\operatorname{proj}_{x}\left(Q^{L P}\right)
$$

Split sets and split cuts

- Consider

$$
P^{I P}=\left\{x \in \mathcal{R}^{n}: A x \leq b, x_{j} \in \mathcal{Z} \quad \text { for } j \in J\right\}
$$

- and the split set:

$$
S=\left\{x \in \mathcal{R}^{n}: \gamma+1>\pi x>\gamma\right\}
$$

where $\pi \in \mathcal{Z}^{n}, \gamma \in \mathcal{Z}$, and $\pi_{j} \neq 0$ only if $j \in J$.

- Clearly

$$
P^{L P} \supseteq \operatorname{conv}\left(P^{L P} \backslash S\right) \supseteq P^{I P}
$$

Is there a benefit in applying split cuts to extended LP formulations?

- Given:
- $P^{L P} \subseteq \mathcal{R}^{n}$ and $Q^{L P} \subseteq \mathcal{R}^{n+k}$ such that $P^{L P}=\operatorname{proj}_{x}\left(Q^{L P}\right)$
- Split sets $S_{i} \subseteq \mathcal{R}^{n}$ and $S_{i}^{+}=S_{i} \times \mathcal{R}^{k}$ for $i \in I=\{1, \ldots, m\}$
- Compare:

$$
\bigcap_{i \in I} \operatorname{conv}\left(P^{L P} \backslash S_{i}\right) \quad \text { vs. } \quad \operatorname{proj}_{\mathcal{R}^{n}}\left(\bigcap_{i \in I} \operatorname{conv}\left(Q^{L P} \backslash S_{i}^{+}\right)\right)
$$

- We can show that:
- If $|I|=1 \Rightarrow$ no gain.
- If $|I|>1 \Rightarrow$ splits on extended formulation can be strictly better.

Proof by example

- It is easy to argue that $P^{L P} \backslash S_{i}=\operatorname{proj}_{\mathcal{R}^{n}}\left(Q^{L P} \backslash S_{i}^{+}\right)$
- Furthermore,

$$
\bigcap_{i \in I} \operatorname{conv}\left(P^{L P} \backslash S_{i}\right) \supseteq \operatorname{proj}_{\mathcal{R}^{n}}\left(\bigcap_{i \in I} \operatorname{conv}\left(Q^{L P} \backslash S_{i}^{+}\right)\right)
$$

- The split closure of $P^{L P}$ below is $(1 / 2,1 / 2)$ whereas that of $Q^{L P}$ is empty.

$$
P^{L P}: \operatorname{conv}((0,1 / 2),(1,1 / 2),(1 / 2,0),(1 / 2,1))
$$

[joint with Jim Luedtke]

Power of extended formulations

Theorem : Every $0-1$ mixed integer set in \mathcal{R}^{n+k} has a reformulation in $\mathcal{R}^{2 n+k}$, such that the split closure of the extended formulation is integral.

- Let $P^{I P}=P^{L P} \cap\{0,1\}^{n} \times \mathcal{R}^{k}$ where

$$
P^{L P}=\operatorname{conv}\left(x^{1}, \ldots, x^{m}\right)+\operatorname{cone}\left(r^{1}, \ldots, r^{\ell}\right)
$$

- Consider $X^{L P}=\operatorname{conv}\left(\hat{x}^{1}, \ldots, \hat{x}^{m}\right)+\operatorname{cone}\left(\hat{r}^{1}, \ldots, \hat{r}^{\ell}\right)$, where
$-\hat{r}^{t}=\left(r^{t}, \mathbf{0}\right)$
$-\hat{x}^{t}=\left(x^{t}, z^{t}\right)$ where

$$
z_{i}^{t}= \begin{cases}1 & \text { if } x_{i}^{t} \text { fractional } \\ 0 & \text { o.w }\end{cases}
$$

$$
\text { for } i=1, \ldots, n
$$

- Elementary splits $S_{i}=\left\{x \in \mathcal{R}^{n+k}: 1>x_{i}>0\right\}$ give the integral hull.

The cropped cube

- Let $N=\{1, \ldots, n\}$ and consider

$$
\begin{aligned}
P^{L P}=\left\{x \in \mathcal{R}^{n}: \quad\right. & \sum_{i \in I} x_{i}+\sum_{i \in N \backslash I}\left(1-x_{i}\right) \geq 1 / 2, \quad \forall I \subseteq N \\
& 0 \leq x_{i} \leq 1, \quad \forall i \in N
\end{aligned}
$$

- All $2^{n}+2 n$ inequalities are facet defining
- All vertices are of the form $x_{i}=1 / 2$ for one $i \in N$ and $x_{j} \in\{0,1\}$ for the rest.

Extended LP formulation for the cropped cube

- Consider

$$
\begin{aligned}
X^{L P}=\left\{(x, z) \in \mathcal{R}^{n} \times \mathcal{R}^{n}: \quad\right. & z_{i} \leq 2 x_{i}, \forall i \in N \\
& z_{i}+2 x_{i} \leq 2, \forall i \in N \\
& z_{i} \geq 0, \forall i \in N \\
& \left.\sum_{i \in N} z_{i}=1\right\}
\end{aligned}
$$

- Extreme points of $X^{L P}$ are of the form $\hat{x}^{t}=\left(x^{t}, z^{t}\right)$ where x^{t} is an extreme point of $P^{L P}$ and

$$
z_{i}^{t}= \begin{cases}1 & \text { if } x_{i}^{t} \text { fractional } \\ 0 & \text { o.w }\end{cases}
$$

- $P^{L P}=\operatorname{proj}_{x}\left(X^{L P}\right)$
- $S C\left(X^{L P}\right)=\emptyset$ whereas $S C^{t}\left(P^{L P}\right) \neq \emptyset$ for all $t<n$.

Generalized cropped cube

- Extreme points of $P^{L P}$ have exactly k fractional components with $x_{i}=1 / 2$.

- Exponentially many extreme points/facets as before.
- The (compact) extended formulation is:

$$
\begin{aligned}
X^{L P}=\left\{(x, z) \in \mathcal{R}^{n} \times \mathcal{R}^{n}: \quad\right. & z_{i} \leq 2 x_{i}, \forall i \in N \\
& z_{i}+2 x_{i} \leq 2, \forall i \in N \\
& z_{i} \geq 0, \forall i \in N \\
& \left.\sum_{i \in N} z_{i}=k\right\}
\end{aligned}
$$

General mixed integer case

The Cook, Kannan and Schrijver's example: $P^{I P}=P^{L P} \cap \mathcal{Z}^{2} \times \mathcal{R}$ where

$$
P^{L P}=\operatorname{conv}((0,0,0),(2,0,0),(0,2,0),(1 / 2,1 / 2, \epsilon))
$$

[$P^{I P}$ has $x_{3}=0$ but $S C^{t}\left(P^{L P}\right)$ has $x_{3}>0$ for all $t=1,2, \ldots$]

Is there a good extended LP formulation for $P^{L P}$?

Properties of good extended formulations: minimality

- Let $S\left(P^{L P}\right)$ denote the split closure of $P^{L P}$ w.r.t. a collection of split sets S.
- If $Q_{1}^{L P} \subset Q_{2}^{L P}$ in \mathcal{R}^{n+k} are extended formulations of $P^{L P} \subset \mathcal{R}^{n}$, then

$$
S\left(Q_{1}^{L P}\right) \subseteq S\left(Q_{2}^{L P}\right) \Rightarrow \operatorname{proj}_{\mathcal{R}^{n}}\left(S\left(Q_{1}^{L P}\right)\right) \subseteq \operatorname{proj}_{\mathcal{R}^{n}}\left(S\left(Q_{2}^{L P}\right)\right)
$$

\Rightarrow Smaller extended formulations are better.

- Each extreme point/ray of $P^{L P}$ should have at least 1 pre-image in $Q^{L P}$.
- Ideally each extreme point/ray of $P^{L P}$ should have exactly 1 pre-image.
- If less than one, not a valid extended formulation
- If more than one, not minimal.
- Minimal extended formulations are not unique even for fixed k.

Properties of good extended formulations: increasing dimension

- Let $S\left(P^{L P}\right)$ denote the split closure of $P^{L P}$ w.r.t. a collection of split sets S.
- Let $Q_{1}^{L P} \subset \mathcal{R}^{n+k}$ be an extended formulation of $P^{L P} \subset \mathcal{R}^{n}$.
- If $\operatorname{dim}\left(Q_{1}^{L P}\right)=\operatorname{dim}\left(P^{L P}\right)$, then $\operatorname{proj}_{\mathcal{R}^{n}}\left(S\left(Q_{1}^{L P}\right)\right)=S\left(P^{L P}\right)$
- More generally, if

$$
k>\operatorname{dim}\left(Q_{1}^{L P}\right)-\operatorname{dim}\left(P^{L P}\right)
$$

then there is an extended formulation $Q_{2}^{L P} \subset \mathcal{R}^{n+t}$ such that

$$
\operatorname{proj}_{\mathcal{R}^{n}}\left(S\left(Q_{1}^{L P}\right)\right)=\operatorname{proj}_{\mathcal{R}^{n}}\left(S\left(Q_{2}^{L P}\right)\right)
$$

where $t=\operatorname{dim}\left(Q_{1}^{L P}\right)-\operatorname{dim}\left(P^{L P}\right)$.
\Rightarrow extended formulations are useless unless they increase dimension.

Limitations of extended formulations

The Cook, Kannan and Schrijver's example: $P^{I P}=P^{L P} \cap \mathcal{Z}^{2} \times \mathcal{R}$ where

$$
P^{L P}=\operatorname{conv}((0,0,0),(2,0,0),(0,2,0),(1 / 2,1 / 2, \epsilon))
$$

1. $P^{L P}$ has 4 extreme points $\Rightarrow Q^{L P}$ should ideally have 4 extreme points.
2. $\operatorname{dim}\left(Q^{L P}\right) \leq 3=\operatorname{dim}\left(P^{L P}\right) \Rightarrow$ no gain!

A minimal extended formulation for mixed integer case

- Let

$$
P^{L P}=\left\{x \in \mathcal{R}^{n}: x=\sum_{i=1}^{k} \alpha_{i} \hat{x}^{i}+\sum_{j=1}^{t} \nu_{j} \hat{r}^{j} \text { s.t. } \sum_{i=1}^{k} \alpha_{i}=1, \alpha \in \mathcal{R}_{+}^{k}, \nu \in \mathcal{R}_{+}^{t}\right\}
$$

where \hat{x}^{i} are the extreme points and \hat{r}^{j} are the extreme rays.

- Consider

$$
X^{L P}=\left\{q \in \mathcal{R}^{n+k+t}: q=\sum_{i=1}^{k} \alpha_{i} \hat{q}^{i}+\sum_{j=1}^{t} \nu_{j} \hat{w}^{j} \text { s.t. } \sum_{i=1}^{k} \alpha_{i}=1, \alpha \in \mathcal{R}_{+}^{k}, \nu \in \mathcal{R}_{+}^{t}\right\}
$$

where $\hat{q}^{i}=\left(\hat{x}^{i}, e_{i}\right), \hat{w}^{j}=\left(\hat{r}^{j}, e_{k+j}\right)$ and e_{i} denotes the unit vector in \mathcal{R}^{k+t}.

- Then

$$
\operatorname{proj}_{\mathcal{R}} n\left(S C\left(X^{L P}\right)\right) \subseteq \operatorname{proj}_{\mathcal{R}^{n}}\left(S C\left(Q^{L P}\right)\right)
$$

for any extended $L P$ formulation $Q^{L P}$ of $P^{L P}$.

- Consider split sets $S^{\ell}=\left\{x \in \mathcal{R}^{n}: \pi_{0}^{\ell}+1>\left(\pi^{\ell}\right)^{T} x>\pi_{0}\right\}$ for $\ell \in L$.
- The split closure of $P^{L P}$ with respect to L is:

$$
\begin{array}{rlrl}
S^{L}\left(P^{L P}\right)= & \begin{cases}x \in \mathcal{R}^{n}: & \\
& \bar{x}=\bar{x}^{\ell}+\overline{\bar{x}}^{\ell}, \\
& \bar{\alpha}_{i=1}^{\ell} \hat{x}^{i}+\sum_{j=1}^{t} \bar{\nu}_{j}^{\ell} \hat{r}^{j},\end{cases} & \overline{\bar{x}}=\sum_{i=1}^{k} \overline{\bar{\alpha}}_{i}^{\ell} \hat{x}^{i}+\sum_{j=1}^{t} \overline{\bar{\nu}}_{j}^{\ell} \hat{r}^{j}, & \ell \in L, \\
& \sum_{i=1}^{k} \bar{\alpha}_{i}^{\ell}=\mu_{\ell}, & \sum_{i=1}^{k} \overline{\bar{\alpha}}_{i}^{\ell}=1-\mu_{\ell}, & \ell \in L, \\
& \left(\pi^{\ell}\right)^{T} \bar{x}_{\ell} \leq \mu_{\ell} \pi_{0}^{\ell}, & \left(\pi^{\ell}\right)^{T} \overline{\bar{x}}_{\ell} \geq\left(1-\mu_{\ell}\right)\left(\pi_{0}^{\ell}+1\right), & \ell \in L \\
& \bar{\alpha}^{\ell}, \bar{\nu}^{\ell} \geq 0, & \left.\overline{\bar{\alpha}}^{\ell}, \overline{\bar{\nu}}^{\ell} \geq 0, \quad 0 \leq \mu \leq 1\right\}
\end{array}
$$

- $\operatorname{proj}_{\mathcal{R}^{n}}\left(S^{L}\left(X^{L P}\right)\right)$ also imposes $\alpha^{*}=\bar{\alpha}^{\ell}+\overline{\bar{\alpha}}^{\ell}$ and $\nu^{*}=\bar{\nu}^{\ell}+\overline{\bar{\nu}}^{\ell}$ for $\ell \in L$.

Computational experiments with the two row relaxation

- Consider a two-row relaxation of a generic IP using the LP tableau:

$$
P^{I P}=\left\{(x, s) \in \mathcal{Z}^{2} \times \mathcal{R}_{+}^{k}: x=f+\sum_{j=1}^{k} \hat{r}^{j} s_{j}\right\}
$$

where f and all \hat{r}^{j} are in \mathcal{R}^{2}.

- $\operatorname{dim}\left(P^{L P}\right)=$ number of extreme points and rays \Rightarrow no gain.
- Compare 16 simple splits applied to $P^{L P}, P_{+}^{L P}=P^{L P} \cap \mathcal{R}_{+}^{2+k}$, and $X_{+}^{L P}$.
- Average gap closed by split cuts:

$\|J\|$	$S\left(P^{L P}\right)$	$S\left(P_{+}^{L P}\right)-S\left(P^{L P}\right)$	$S\left(X_{+}^{L P}\right)-S\left(P_{+}^{L P}\right)$	$P_{+}^{I P}-S\left(X_{+}^{L P}\right)$
20	$88.82(42 / 100)$	$16.21(23 / 58)$	$5.99(10 / 35)$	$15.44(25)$
40	$91.20(47 / 100)$	$11.87(17 / 53)$	$5.17(6 / 36)$	$12.87(30)$
60	$88.48(36 / 100)$	$11.90(28 / 64)$	$5.31(9 / 36)$	$16.94(27)$
80	$91.32(44 / 100)$	$15.44(27 / 56)$	$2.51(11 / 29)$	$13.59(18)$
100	$89.53(43 / 100)$	$12.33(25 / 57)$	$6.09(6 / 32)$	$19.78(26)$

Lovaśz-Schrijver extended formulation

- Let $P^{I P}=P^{L P} \cap\{0,1\}^{n}$ and

$$
P^{L P}=\left\{x \in \mathcal{R}^{n}: A x \geq b\right\}
$$

where $1 \geq x \geq 0$ is included in $A x \geq b$.

- The Lovaśz-Schrijver extended formulation $Q\left(P^{L P}\right)$:

1. Generate the nonlinear system

$$
\begin{aligned}
x_{j}(A x-b) & \geq 0 \\
\left(1-x_{j}\right)(A x-b) & \geq 0 \quad j=1, \ldots, n
\end{aligned}
$$

2. Linearize by substituting $y_{i j}$ for $x_{i} x_{j} \quad$ (and $y_{i j}=y_{j i}$.)
3. [But do not strengthen by substituting x_{i} for $y_{i i}$ yet.]

- Note that $P^{L P}=\operatorname{proj}_{x}\left(Q\left(P^{L P}\right)\right)$
- Further, $P^{L P} \supseteq S^{01}\left(P^{L P}\right) \supseteq N\left(P^{L P}\right)=\operatorname{proj}_{x}\left(Q\left(P^{L P}\right)+\right.$ strengthening step 3)

Split cuts for the Lovaśz-Schrijver extended formulation

- The strengthening step (substituting x_{i} for $y_{i i}$) is a $0 / 1$ split cut for $Q\left(P^{L P}\right)$.
- There are more split cuts for $Q\left(P^{L P}\right)$ (even from $0 / 1$ splits).
- Let $S^{01}\left(Q\left(P^{L P}\right)\right)$ be the split closure of $Q\left(P^{L P}\right)$ w.r.t. $0 / 1$ splits.

We can show that

$$
\operatorname{proj}_{x}\left(S^{01}\left(Q\left(P^{L P}\right)\right)\right) \subseteq \underbrace{\operatorname{proj}_{x}\left(Q\left(S^{01}\left(P^{L P}\right)\right)+\right.\text { strengthening step 3) }}_{\text {Lovaśz-Schrijver }\left(w / \text { strengthening) applied to 0/1 split closure of } P^{L P}\right.}
$$

Which also implies $\operatorname{proj}_{x}\left(S^{01}\left(Q\left(P^{L P}\right)\right)\right) \subseteq S^{01}\left(S^{01}\left(P^{L P}\right)\right)$ and therefore:

$$
\text { Applying this procedure } n / 2 \text { times gives an integral polyhedron. }
$$

$\left(a s\left(S^{01}\right)^{n}\left(P^{L P}\right)=P^{I P}\right)$

Computations with the Lovaśz-Schrijver extended formulation

- Random instances of the stable set problem with density 0.25% (higher density instances do not have gap between N^{2} and $S A^{2}$)
- For the the stable set problem, $N\left(P^{L P}\right)=S^{01}\left(P^{L P}\right)=$ odd cycle inequalities
- Consequently, for the stable set problem:

$$
P^{I P} \subseteq \underbrace{S A^{2}\left(P^{L P}\right)}_{\text {2nd level Sherali-Adams }} \subseteq \underbrace{\tilde{N}\left(P^{L P}\right)}_{\text {new }} \subseteq N^{2}\left(P^{L P}\right) \subseteq \underbrace{N\left(P^{L P}\right)}_{\text {Lovasz-Schrijver }} \subseteq P^{L P} .
$$

$\|V\|$	N	$N^{2}-N$	$\tilde{N}-N^{2}$	$S A^{2}-\tilde{N}$	\% Gap left
20	100	0	0	0	0
25	99.53	0.46	0	0	0
30	97.50	2.49	0	0	0
35	90.29	9.52	0.0527	0	0.1236
40	89.45	10.37	0.0843	0.0003	0.0796
45	84.70	14.79	0.1214	0.0002	0.3727
50	80.55	18.33	0.0862	0.0001	1.0299

thank you...

