Cutting planes from extended LP formulations

Oktay Günlük

Math Sciences, IBM Research

(joint work with Sanjeeb Dash and Merve Bodur)

November 2015 – Oaxaca Workshop

Consider

$$P^{IP} = \left\{ x \in \mathcal{R}^n : Ax \le b, \ x_i \in \mathcal{Z} \ \text{ for } i \in I \right\}$$

and

$$Q^{IP} = \{(x, s) \in \mathcal{R}^n \times \mathcal{R}^k : Cx + Gs \le d, \ x_i \in \mathcal{Z} \ \text{ for } i \in I\}$$

such that

$$P^{LP} = \operatorname{proj}_x \left(Q^{LP} \right)$$

Consider

$$P^{IP} = \{x \in \mathcal{R}^n : Ax \le b, x_j \in \mathcal{Z} \text{ for } j \in J\}$$

• and the split set:

$$S = \{ x \in \mathcal{R}^n : \gamma + 1 > \pi x > \gamma \}$$

where $\pi \in \mathbb{Z}^n$, $\gamma \in \mathbb{Z}$, and $\pi_j \neq 0$ only if $j \in J$.

Clearly

$$P^{LP}\supseteq\operatorname{conv}(P^{LP}\setminus S)\supseteq P^{IP}.$$

• Given:

-
$$P^{LP} \subseteq \mathcal{R}^n$$
 and $Q^{LP} \subseteq \mathcal{R}^{n+k}$ such that $P^{LP} = \operatorname{proj}_x\left(Q^{LP}\right)$

- Split sets
$$S_i \subseteq \mathcal{R}^n$$
 and $S_i^+ = S_i \times \mathcal{R}^k$ for $i \in I = \{1, \dots, m\}$

• Compare:

$$igcap_{i \in I} \operatorname{conv}(P^{LP} \setminus S_i)$$
 vs. $\operatorname{proj}_{\mathcal{R}^n} \left(igcap_{i \in I} \operatorname{conv}(Q^{LP} \setminus S_i^+)
ight)$

- We can show that:
 - If $|I| = 1 \Rightarrow$ no gain.
 - If $|I| > 1 \Rightarrow$ splits on extended formulation can be strictly better.

- It is easy to argue that $P^{LP} \setminus S_i = \operatorname{proj}_{\mathcal{R}^n} \left(Q^{LP} \setminus S_i^+ \right)$
- Furthermore,

$$\bigcap_{i \in I} \mathsf{conv}(P^{LP} \setminus S_i) \supseteq \mathsf{proj}_{\mathcal{R}^n} \left(\bigcap_{i \in I} \mathsf{conv}(Q^{LP} \setminus S_i^+) \right)$$

• The split closure of P^{LP} below is (1/2, 1/2) whereas that of Q^{LP} is empty.

 $P^{LP}: \mathsf{conv}((0, 1/2), (1, 1/2), (1/2, 0), (1/2, 1))$

Theorem : Every 0-1 mixed integer set in \mathbb{R}^{n+k} has a reformulation in \mathbb{R}^{2n+k} , such that the split closure of the extended formulation is integral.

- Let $P^{IP}=P^{LP}\cap\{0,1\}^n imes \mathcal{R}^k$ where $P^{LP}=\operatorname{conv}(x^1,\dots,x^m)+\operatorname{cone}(r^1,\dots,r^\ell)$
- Consider $X^{LP}=\operatorname{conv}(\hat{x}^1,\ldots,\hat{x}^m)+\operatorname{cone}(\hat{r}^1,\ldots,\hat{r}^\ell)$, where $-\hat{r}^t=(r^t,\mathbf{0})$ $-\hat{x}^t=(x^t,z^t) \text{ where }$ $z_i^t=\left\{\begin{array}{ll} 1 & \text{if } x_i^t \text{ fractional } \\ 0 & \text{o.w.} \end{array}\right.$ for $i=1,\ldots,n$.
- Elementary splits $S_i = \{x \in \mathbb{R}^{n+k} : 1 > x_i > 0\}$ give the integral hull.

• Let $N = \{1, \ldots, n\}$ and consider

$$P^{LP} = \left\{ x \in \mathcal{R}^n : \sum_{i \in I} x_i + \sum_{i \in N \setminus I} (1 - x_i) \ge 1/2, \quad \forall I \subseteq N \right\}$$
 $0 \le x_i \le 1, \quad \forall i \in N$

- All $2^n + 2n$ inequalities are facet defining
- All vertices are of the form $x_i = 1/2$ for one $i \in N$ and $x_j \in \{0, 1\}$ for the rest.

Consider

$$X^{LP} = \left\{ (x, z) \in \mathcal{R}^n \times \mathcal{R}^n : z_i \leq 2x_i, \ \forall i \in N \\ z_i + 2x_i \leq 2, \ \forall i \in N \\ z_i \geq 0, \ \forall i \in N \\ \sum_{i \in N} z_i = 1 \right\}$$

- Extreme points of X^{LP} are of the form $\hat{x}^t = (x^t, z^t)$ where x^t is an extreme point of P^{LP} and $z_i^t = \left\{ \begin{array}{ll} 1 & \text{if } x_i^t \text{ fractional} \\ 0 & \text{o.w.} \end{array} \right.$
- $P^{LP} = \operatorname{proj}_x(X^{LP})$
- $SC(X^{LP}) = \emptyset$ whereas $SC^t(P^{LP}) \neq \emptyset$ for all t < n .

ullet Extreme points of P^{LP} have exactly k fractional components with $x_i=1/2$.

- Exponentially many extreme points/facets as before.
- The (compact) extended formulation is:

$$X^{LP} = \left\{ (x, z) \in \mathcal{R}^n \times \mathcal{R}^n : z_i \leq 2x_i, \ \forall i \in N \\ z_i + 2x_i \leq 2, \ \forall i \in N \\ z_i \geq 0, \ \forall i \in N \\ \sum_{i \in N} z_i = k \right\}$$

The Cook, Kannan and Schrijver's example: $P^{IP}=P^{LP}\cap\mathcal{Z}^2 imes\mathcal{R}$ where

$$P^{LP} = \mathsf{conv}((0,0,0), (2,0,0), (0,2,0), (1/2,1/2,\epsilon))$$

[P^{IP} has $x_3=0$ but $SC^t(P^{LP})$ has $x_3>0$ for all $t=1,2,\ldots$]

Is there a good extended LP formulation for P^{LP} ?

- Let $S(P^{LP})$ denote the split closure of P^{LP} w.r.t. a collection of split sets S.
- If $Q_1^{LP}\subset Q_2^{LP}$ in \mathcal{R}^{n+k} are extended formulations of $P^{LP}\subset \mathcal{R}^n$, then

$$S(Q_1^{LP}) \subseteq S(Q_2^{LP}) \ \Rightarrow \ \operatorname{proj}_{\mathcal{R}^n} \left(S(Q_1^{LP}) \right) \subseteq \operatorname{proj}_{\mathcal{R}^n} \left(S(Q_2^{LP}) \right)$$

⇒ Smaller extended formulations are better.

- Each extreme point/ray of P^{LP} should have at least 1 pre-image in Q^{LP} .
- Ideally each extreme point/ray of P^{LP} should have exactly 1 pre-image.
 - If less than one, not a valid extended formulation
 - If more than one, not minimal.
- Minimal extended formulations are not unique even for fixed k.

- ullet Let $S(P^{LP})$ denote the split closure of P^{LP} w.r.t. a collection of split sets S .
- Let $Q_1^{LP} \subset \mathcal{R}^{n+k}$ be an extended formulation of $P^{LP} \subset \mathcal{R}^n$.
- If $\dim(Q_1^{LP}) = \dim(P^{LP})$, then $\operatorname{proj}_{\mathcal{R}^n}\left(S(Q_1^{LP})\right) = S(P^{LP})$
- More generally, if

$$k > \dim(Q_1^{LP}) - \dim(P^{LP})$$

then there is an extended formulation $Q_2^{LP}\subset \mathcal{R}^{n+t}$ such that

$$\operatorname{proj}_{\mathcal{R}^n}\left(S(Q_1^{LP})\right) = \operatorname{proj}_{\mathcal{R}^n}\left(S(Q_2^{LP})\right)$$

where $t = \dim(Q_1^{LP}) - \dim(P^{LP})$.

⇒ extended formulations are useless unless they increase dimension.

The Cook, Kannan and Schrijver's example: $P^{IP} = P^{LP} \cap \mathcal{Z}^2 \times \mathcal{R}$ where

$$P^{LP} = \mathrm{conv}((0,0,0), (2,0,0), (0,2,0), (1/2,1/2,\epsilon))$$

- 1. P^{LP} has 4 extreme points $\Rightarrow Q^{LP}$ should ideally have 4 extreme points.
- 2. $\dim(Q^{LP}) \leq 3 = \dim(P^{LP}) \Rightarrow \text{no gain!}$

Let

$$P^{LP} = \{x \in \mathcal{R}^n : x = \sum_{i=1}^k \alpha_i \hat{x}^i + \sum_{j=1}^t \nu_j \hat{r}^j \text{ s.t. } \sum_{i=1}^k \alpha_i = 1, \ \alpha \in \mathcal{R}_+^k, \ \nu \in \mathcal{R}_+^t \}$$

where \hat{x}^i are the extreme points and \hat{r}^j are the extreme rays.

Consider

$$X^{LP} = \{ q \in \mathcal{R}^{n+k+t} : q = \sum_{i=1}^{k} \alpha_i \hat{q}^i + \sum_{j=1}^{t} \nu_j \hat{w}^j \text{ s.t. } \sum_{i=1}^{k} \alpha_i = 1, \ \alpha \in \mathcal{R}_+^k, \ \nu \in \mathcal{R}_+^t \}$$

where $\hat{q}^i=(\hat{x}^i,e_i)$, $\hat{w}^j=(\hat{r}^j,e_{k+j})$ and e_i denotes the unit vector in \mathcal{R}^{k+t} .

Then

$$\operatorname{proj}_{\mathcal{R}^n}\left(SC(\boldsymbol{X}^{LP})\right)\subseteq\operatorname{proj}_{\mathcal{R}^n}\left(SC(\boldsymbol{Q}^{LP})\right)$$

for any extended LP formulation Q^{LP} of P^{LP} .

- Consider split sets $S^{\ell}=\{x\in\mathcal{R}^n:\pi_0^{\ell}+1>(\pi^{\ell})^Tx>\pi_0\}$ for $\ell\in L$.
- The split closure of P^{LP} with respect to L is:

$$S^{L}(P^{LP}) = \left\{ x \in \mathcal{R}^{n} : \qquad x = \bar{x}^{\ell} + \bar{\bar{x}}^{\ell}, \qquad \ell \in L, \right.$$

$$\bar{x} = \sum_{i=1}^{k} \bar{\alpha}_{i}^{\ell} \hat{x}^{i} + \sum_{j=1}^{t} \bar{\nu}_{j}^{\ell} \hat{r}^{j}, \qquad \bar{\bar{x}} = \sum_{i=1}^{k} \bar{\alpha}_{i}^{\ell} \hat{x}^{i} + \sum_{j=1}^{t} \bar{\nu}_{j}^{\ell} \hat{r}^{j}, \qquad \ell \in L,$$

$$\sum_{i=1}^{k} \bar{\alpha}_{i}^{\ell} = \mu_{\ell}, \qquad \sum_{i=1}^{k} \bar{\alpha}_{i}^{\ell} = 1 - \mu_{\ell}, \qquad \ell \in L,$$

$$(\pi^{\ell})^{T} \bar{x}_{\ell} \leq \mu_{\ell} \pi_{0}^{\ell}, \qquad (\pi^{\ell})^{T} \bar{\bar{x}}_{\ell} \geq (1 - \mu_{\ell})(\pi_{0}^{\ell} + 1), \qquad \ell \in L,$$

$$\bar{\alpha}^{\ell}, \bar{\nu}^{\ell} \geq 0, \qquad \bar{\bar{\alpha}}^{\ell}, \bar{\bar{\nu}}^{\ell} \geq 0, \qquad 0 \leq \mu \leq 1 \right\}.$$

• $\operatorname{proj}_{\mathcal{R}^n}\left(S^L(X^{LP})\right)$ also imposes $\alpha^* = \bar{\alpha}^\ell + \bar{\bar{\alpha}}^\ell$ and $\nu^* = \bar{\nu}^\ell + \bar{\bar{\nu}}^\ell$ for $\ell \in L$.

• Consider a two-row relaxation of a generic IP using the LP tableau:

$$P^{IP} = \left\{ (x, s) \in \mathcal{Z}^2 \times \mathcal{R}_+^k : x = f + \sum_{j=1}^k \hat{r}^j s_j \right\}$$

where f and all \hat{r}^j are in \mathcal{R}^2 .

- $\dim(P^{LP}) = \text{number of extreme points and rays} \Rightarrow \text{no gain.}$
- ullet Compare 16 simple splits applied to P^{LP} , $P_+^{LP}=P^{LP}\cap \mathcal{R}_+^{2+k},$ and X_+^{LP} .
- Average gap closed by split cuts:

J	$S(P^{LP})$	$S(P_+^{LP}) - S(P^{LP})$	$S(X_+^{LP}) - S(P_+^{LP})$	$P_+^{IP} - S(X_+^{LP})$
20	88.82 (42/100)	16.21 (23/58)	5.99 (10/35)	15.44 (25)
<i>40</i>	91.20 (47/100)	11.87 (17/53)	<i>5.17 (6/36)</i>	12.87 (30)
<i>60</i>	88.48 (36/100)	11.90 (28/64)	5.31 (9/36)	<i>16.94 (27)</i>
<i>80</i>	91.32 (44/100)	15.44 (27/56)	2.51 (11/29)	13.59 (18)
100	89.53 (43/100)	12.33 (25/57)	6.09 (6/32)	19.78 (26)

• Let $P^{IP}=P^{LP}\cap\{0,1\}^n$ and

$$P^{LP} = \{ x \in \mathcal{R}^n : Ax \ge b \}$$

where $1 \ge x \ge 0$ is included in $Ax \ge b$.

- ullet The Lova´sz-Schrijver extended formulation $Q(P^{LP})$:
 - 1. Generate the nonlinear system

$$x_j(Ax - b) \ge 0$$

$$(1 - x_j)(Ax - b) \ge 0 j = 1, \dots, n.$$

- 2. Linearize by substituting y_{ij} for x_ix_j (and $y_{ij}=y_{ji}$.)
- 3. [But do not strengthen by substituting x_i for y_{ii} yet.]
- Note that $P^{LP} = \operatorname{proj}_x \left(Q(P^{LP}) \right)$
- Further, $P^{LP} \supseteq S^{01}(P^{LP}) \supseteq N(P^{LP}) = \operatorname{proj}_x \left(Q(P^{LP}) + \operatorname{strengthening\ step\ 3}\right)$

- The strengthening step (substituting x_i for y_{ii}) is a 0/1 split cut for $Q(P^{LP})$.
- There are more split cuts for $Q(P^{LP})$ (even from 0/1 splits).
- Let $S^{01}(Q(P^{LP}))$ be the split closure of $Q(P^{LP})$ w.r.t. 0/1 splits.

We can show that

$$\operatorname{proj}_x\left(S^{01}(Q(P^{LP}))\right)\subseteq \underbrace{\operatorname{proj}_x\left(Q(S^{01}(P^{LP}))+\operatorname{strengthening\ step\ 3}\right)}_{Lova\acute{s}z\text{-}Schrijver\ (\textit{w/\ strengthening})\ applied\ to\ 0/1\ split\ closure\ of\ }P^{LP}$$

Which also implies $\operatorname{proj}_x\left(S^{01}(Q(P^{LP}))\right)\subseteq S^{01}(S^{01}(P^{LP}))$ and therefore:

Applying this procedure n/2 times gives an integral polyhedron.

(as
$$(S^{01})^n(P^{LP}) = P^{IP}$$
)

- ullet Random instances of the stable set problem with density 0.25% (higher density instances do not have gap between N^2 and SA^2)
- For the stable set problem, $N(P^{LP}) = S^{01}(P^{LP}) = odd$ cycle inequalities
- Consequently, for the stable set problem:

$$P^{IP} \subseteq \underbrace{SA^2(P^{LP})}_{\text{2nd level Sherali-Adams}} \subseteq \underbrace{\tilde{N}(P^{LP})}_{\text{new}} \subseteq N^2(P^{LP}) \subseteq \underbrace{N(P^{LP})}_{\text{Lovasz-Schrijver}} \subseteq P^{LP}.$$

V	N	$N^2 - N$	$ ilde{N}-N^2$	$SA^2 - \tilde{N}$	% Gap left
20	100	0	0	0	0
<i>25</i>	99.53	0.46	0	0	0
<i>30</i>	97.50	2.49	0	0	0
<i>35</i>	90.29	9.52	0.0527	0	0.1236
40	89.45	10.37	0.0843	0.0003	0.0796
<i>45</i>	84.70	14.79	0.1214	0.0002	0.3727
<i>50</i>	80.55	18.33	0.0862	0.0001	1.0299

thank you...