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Extended LP formulations

Consider

P
IP

=
{
x ∈ Rn

: Ax ≤ b, xi ∈ Z for i ∈ I
}

and

Q
IP

=
{

(x, s) ∈ Rn ×Rk
: Cx+Gs ≤ d, xi ∈ Z for i ∈ I

}
such that

P
LP

= projx

(
Q
LP
)

x1

x2 PLP

x1

s

x2 QLP
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Split sets and split cuts

• Consider

P
IP

=
{
x ∈ Rn

: Ax ≤ b, xj ∈ Z for j ∈ J
}

• and the split set:
S =

{
x ∈ Rn

: γ + 1 > πx > γ}

where π ∈ Zn, γ ∈ Z, and πj 6= 0 only if j ∈ J.

• Clearly

P
LP ⊇ conv(P

LP \ S) ⊇ P IP
.

PLP

S

x1

x2
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Is there a benefit in applying split cuts to extended LP formulations?

• Given:

– PLP ⊆ Rn and QLP ⊆ Rn+k such that PLP = projx
(
QLP

)
– Split sets Si ⊆ Rn and S+

i = Si ×Rk for i ∈ I = {1, . . . ,m}

• Compare:

⋂
i∈I

conv(P
LP \ Si) vs. projRn

(⋂
i∈I

conv(Q
LP \ S+

i )

)

• We can show that:

– If |I| = 1⇒ no gain.

– If |I| > 1⇒ splits on extended formulation can be strictly better.
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Proof by example

• It is easy to argue that PLP \ Si = projRn
(
QLP \ S+

i

)
• Furthermore,

⋂
i∈I

conv(P
LP \ Si) ⊇ projRn

(⋂
i∈I

conv(Q
LP \ S+

i )

)

• The split closure of PLP below is (1/2, 1/2) whereas that of QLP is empty.

1/2

1/2

1/2

1/2

x1

x2

PLP : conv((0, 1/2), (1, 1/2), (1/2, 0), (1/2, 1))

1/2

1/2

1/2

x1

s

x2 QLP

[joint with Jim Luedtke]
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Power of extended formulations

Theorem : Every 0 − 1 mixed integer set in Rn+k has a reformulation in R2n+k,

such that the split closure of the extended formulation is integral.

• Let P IP = PLP ∩ {0, 1}n ×Rk where

P
LP

= conv(x
1
, . . . , x

m
) + cone(r

1
, . . . , r

`
)

• Consider XLP = conv(x̂1, . . . , x̂m) + cone(r̂1, . . . , r̂`) , where

– r̂t = (rt, 0)

– x̂t = (xt, zt) where

z
t
i =

{
1 if xti fractional

0 o.w.

for i = 1, . . . , n.

• Elementary splits Si = {x ∈ Rn+k : 1 > xi > 0} give the integral hull.

(n− 1)
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The cropped cube

• Let N = {1, . . . , n} and consider

P
LP

=
{
x ∈ Rn

:
∑
i∈I

xi +
∑
i∈N\I

(1− xi) ≥ 1/2, ∀I ⊆ N

0 ≤ xi ≤ 1, ∀i ∈ N
}

x1

x3

x2

• All 2n + 2n inequalities are facet defining

• All vertices are of the form xi = 1/2 for one i ∈ N and xj ∈ {0, 1} for the rest.
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Extended LP formulation for the cropped cube

• Consider

X
LP

=
{

(x, z) ∈ Rn ×Rn
: zi ≤ 2xi, ∀i ∈ N

zi + 2xi ≤ 2, ∀i ∈ N

zi ≥ 0, ∀i ∈ N∑
i∈N

zi = 1
}

• Extreme points of XLP are of the form x̂t = (xt, zt) where xt is an extreme point

of PLP and

z
t
i =

{
1 if xti fractional

0 o.w.

• PLP = projx
(
XLP

)
• SC(XLP ) = ∅ whereas SCt(PLP ) 6= ∅ for all t < n .
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Generalized cropped cube

• Extreme points of PLP have exactly k fractional components with xi = 1/2 .

x1

x3

x2

• Exponentially many extreme points/facets as before.

• The (compact) extended formulation is:

X
LP

=
{

(x, z) ∈ Rn ×Rn
: zi ≤ 2xi, ∀i ∈ N

zi + 2xi ≤ 2, ∀i ∈ N

zi ≥ 0, ∀i ∈ N∑
i∈N

zi = k
}
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General mixed integer case

The Cook, Kannan and Schrijver’s example: P IP = PLP ∩ Z2 ×R where

P
LP

= conv((0, 0, 0), (2, 0, 0), (0, 2, 0), (1/2, 1/2, ε))

[ P IP has x3 = 0 but SCt(PLP ) has x3 > 0 for all t = 1, 2, . . . ]

2

2

0

ε

x1

x3

x2

PLP

Is there a good extended LP formulation for PLP ?

9



10

Properties of good extended formulations: minimality

• Let S(PLP ) denote the split closure of PLP w.r.t. a collection of split sets S.

• If QLP
1 ⊂ QLP

2 in Rn+k are extended formulations of PLP ⊂ Rn, then

S(Q
LP
1 ) ⊆ S(Q

LP
2 ) ⇒ projRn

(
S(Q

LP
1 )
)
⊆ projRn

(
S(Q

LP
2 )
)

⇒ Smaller extended formulations are better.

• Each extreme point/ray of PLP should have at least 1 pre-image in QLP .

• Ideally each extreme point/ray of PLP should have exactly 1 pre-image.

– If less than one, not a valid extended formulation

– If more than one, not minimal.

• Minimal extended formulations are not unique even for fixed k.
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Properties of good extended formulations: increasing dimension

• Let S(PLP ) denote the split closure of PLP w.r.t. a collection of split sets S .

• Let QLP
1 ⊂ Rn+k be an extended formulation of PLP ⊂ Rn .

• If dim(QLP
1 ) = dim(PLP ) , then projRn

(
S(QLP

1 )
)

= S(PLP )

• More generally, if

k > dim(Q
LP
1 )− dim(P

LP
)

then there is an extended formulation QLP
2 ⊂ Rn+t such that

projRn
(
S(Q

LP
1 )
)

= projRn
(
S(Q

LP
2 )
)

where t = dim(QLP
1 )− dim(PLP ) .

⇒ extended formulations are useless unless they increase dimension.
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Limitations of extended formulations

The Cook, Kannan and Schrijver’s example: P IP = PLP ∩ Z2 ×R where

P
LP

= conv((0, 0, 0), (2, 0, 0), (0, 2, 0), (1/2, 1/2, ε))

2

2

0

ε

x1

x3

x2

PLP

1. PLP has 4 extreme points ⇒ QLP should ideally have 4 extreme points.

2. dim(QLP ) ≤ 3 = dim(PLP )⇒ no gain!
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A minimal extended formulation for mixed integer case

• Let

P
LP

= {x ∈ Rn
: x =

k∑
i=1

αix̂
i
+

t∑
j=1

νjr̂
j

s.t.
k∑
i=1

αi = 1, α ∈ Rk
+, ν ∈ R

t
+}

where x̂i are the extreme points and r̂j are the extreme rays.

• Consider

X
LP

= {q ∈ Rn+k+t
: q =

k∑
i=1

αiq̂
i
+

t∑
j=1

νjŵ
j

s.t.
k∑
i=1

αi = 1, α ∈ Rk
+, ν ∈ R

t
+}

where q̂i = (x̂i, ei) , ŵj = (r̂j, ek+j) and ei denotes the unit vector in Rk+t .

• Then

projRn
(
SC(X

LP
)
)
⊆ projRn

(
SC(Q

LP
)
)

for any extended LP formulation QLP of PLP .
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The strength of the extended formulation

• Consider split sets S` = {x ∈ Rn : π`0 + 1 > (π`)Tx > π0} for ` ∈ L .

• The split closure of PLP with respect to L is:

S
L
(P

LP
) =
{
x ∈ Rn

: x = x̄
`
+ ¯̄x

`
, ` ∈ L,

x̄ =

k∑
i=1

ᾱ
`
ix̂
i
+

t∑
j=1

ν̄
`
j r̂
j
, ¯̄x =

k∑
i=1

¯̄α
`
ix̂
i
+

t∑
j=1

¯̄ν
`
j r̂
j
, ` ∈ L,

k∑
i=1

ᾱ
`
i = µ`,

k∑
i=1

¯̄α
`
i = 1− µ`, ` ∈ L,

(π
`
)
T
x̄` ≤ µ`π`0, (π

`
)
T ¯̄x` ≥ (1− µ`)(π`0 + 1), ` ∈ L,

ᾱ
`
, ν̄

` ≥ 0, ¯̄α
`
, ¯̄ν

` ≥ 0, 0 ≤ µ ≤ 1
}
.

• projRn
(
SL(XLP )

)
also imposes α∗ = ᾱ` + ¯̄α` and ν∗ = ν̄` + ¯̄ν` for ` ∈ L.
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Computational experiments with the two row relaxation

• Consider a two-row relaxation of a generic IP using the LP tableau:

P
IP

=
{

(x, s) ∈ Z2 ×Rk
+ : x = f +

k∑
j=1

r̂
j
sj
}

where f and all r̂j are in R2 .

• dim(PLP ) = number of extreme points and rays ⇒ no gain.

• Compare 16 simple splits applied to PLP , PLP
+ = PLP ∩R2+k

+ , and XLP
+ .

• Average gap closed by split cuts:

|J| S(PLP ) S(PLP
+ )− S(PLP ) S(XLP

+ )− S(PLP
+ ) P IP

+ − S(XLP
+ )

20 88.82 (42/100) 16.21 (23/58) 5.99 (10/35) 15.44 (25)

40 91.20 (47/100) 11.87 (17/53) 5.17 (6/36) 12.87 (30)

60 88.48 (36/100) 11.90 (28/64) 5.31 (9/36) 16.94 (27)

80 91.32 (44/100) 15.44 (27/56) 2.51 (11/29) 13.59 (18)

100 89.53 (43/100) 12.33 (25/57) 6.09 (6/32) 19.78 (26)
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Lovaśz-Schrijver extended formulation

• Let P IP = PLP ∩ {0, 1}n and

P
LP

= {x ∈ Rn
: Ax ≥ b}

where 1 ≥ x ≥ 0 is included in Ax ≥ b .

• The Lovaśz-Schrijver extended formulation Q(PLP ) :

1. Generate the nonlinear system

xj(Ax− b) ≥ 0

(1− xj)(Ax− b) ≥ 0 j = 1, . . . , n.

2. Linearize by substituting yij for xixj (and yij = yji .)

3. [But do not strengthen by substituting xi for yii yet.]

• Note that PLP = projx
(
Q(PLP )

)
• Further, PLP ⊇ S01(PLP ) ⊇ N(PLP ) = projx

(
Q(PLP ) + strengthening step 3

)
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Split cuts for the Lovaśz-Schrijver extended formulation

• The strengthening step (substituting xi for yii ) is a 0/1 split cut for Q(PLP ).

• There are more split cuts for Q(PLP ) (even from 0/1 splits).

• Let S01(Q(PLP )) be the split closure of Q(PLP ) w.r.t. 0/1 splits.

We can show that

projx

(
S

01
(Q(P

LP
))
)
⊆ projx

(
Q(S

01
(P

LP
)) + strengthening step 3

)
︸ ︷︷ ︸

Lovaśz-Schrijver (w/ strengthening) applied to 0/1 split closure of PLP

Which also implies projx
(
S01(Q(PLP ))

)
⊆ S01(S01(PLP )) and therefore:

Applying this procedure n/2 times gives an integral polyhedron.

(as (S01)n(PLP ) = P IP )
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Computations with the Lovaśz-Schrijver extended formulation

• Random instances of the stable set problem with density 0.25%

(higher density instances do not have gap between N2 and SA2 )

• For the the stable set problem, N(PLP ) = S01(PLP ) = odd cycle inequalities

• Consequently, for the stable set problem:

P
IP ⊆ SA

2
(P

LP
)︸ ︷︷ ︸

2nd level Sherali-Adams

⊆ Ñ(P
LP

)︸ ︷︷ ︸
new

⊆ N2
(P

LP
) ⊆ N(P

LP
)︸ ︷︷ ︸

Lovasz-Schrijver

⊆ PLP
.

|V | N N2 −N Ñ −N2 SA2 − Ñ % Gap left

20 100 0 0 0 0

25 99.53 0.46 0 0 0

30 97.50 2.49 0 0 0

35 90.29 9.52 0.0527 0 0.1236

40 89.45 10.37 0.0843 0.0003 0.0796

45 84.70 14.79 0.1214 0.0002 0.3727

50 80.55 18.33 0.0862 0.0001 1.0299
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thank you...
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