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An application: the Optimal Power Flow problem (ACOPF)

Input: an undirected graph G.

• For every vertex i, two variables: ei and fi

• For every edge {k,m}, four (specific) quadratics:

HP
k,m(ek, fk, em, fm), HQ

k,m(ek, fk, em, fm)

HP
m,k(ek, fk, em, fm), HQ

m,k(ek, fk, em, fm)
k m

e efk k m m
f

min
∑
k

Fk

 ∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm)


s.t. LPk ≤

∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm) ≤ UP

k ∀k

LQk ≤
∑

{k,m}∈δ(k)

HQ
k,m(ek, fk, em, fm) ≤ UQ

k ∀k

V L
k ≤ ‖(ek, fk)‖ ≤ V U

k ∀k.
Function Fk in the objective: convex quadratic



Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.
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Reformulation of ACOPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0, W of rank 1.
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Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min F •W
s.t. Ai •W ≤ bi i = 1, 2, . . .

W � 0.

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is usually good!!
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But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth ≤ w if it is a subgraph of an inter-
section graph of subtrees of a tree, with ≤ w + 1 subtrees overlapping at
any vertex

(Seymour and Robertson, early 1980s)



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:

(1) For each vertex v of G, the set {t ∈ V (T ) : v ∈ Qt} is a subtree
of T , denoted Tv.

(2) For each edge {u, v} of G, the two subtrees Tu and Tv intersect.

• The width of (T,Q) is maxt∈T |Qt| − 1.
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→ two subtrees Tu, Tv may overlap even if {u, v} is not an edge of G



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:

(1) For each vertex v of G, the set {t ∈ V (T ) : v ∈ Qt} is a subtree
of T , denoted Tv.

(2) For each edge {u, v} of G, the two subtrees Tu and Tv intersect.

• The width of (T,Q) is maxt∈T |Qt| − 1.
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But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with ≈ 3× 103 vertices: → 20 minutes runtime



But: the SDP relaxation is always slow on large graphs

• Real-life grids → > 104 vertices

• SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with ≈ 3× 103 vertices: → 20 minutes runtime

→ Perhaps low tree-width yields direct algorithms for ACOPF itself?

That is to say, not for a relaxation?



Much previous work using structured sparsity

• Bienstock and Özbay (Sherali-Adams + treewidth)

•Wainwright and Jordan (Sherali-Adams + treewidth)

• Grimm, Netzer, Schweighofer

• Laurent (Sherali-Adams + treewidth)

• Lasserre et al (moment relaxation + treewidth)

•Waki, Kim, Kojima, Muramatsu

older work ...

• Lauritzen (1996): tree-junction theorem

• Bertele and Brioschi (1972): nonserial dynamic programming

• Bounded tree-width in combinatorial optimization (early 1980s) (Arnborg
et al plus too many authors)

• Fulkerson and Gross (1965): matrices with consecutive ones
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ACOPF, again

Input: an undirected graph G.

• For every vertex i, two variables: ei and fi

• For every edge {k,m}, four (specific) quadratics:

HP
k,m(ek, fk, em, fm), HQ

k,m(ek, fk, em, fm)

HP
m,k(ek, fk, em, fm), HQ

m,k(ek, fk, em, fm)
k m

e efk k m m
f

min
∑
k

wk

s.t. LPk ≤
∑

{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm) ≤ UP

k ∀k

LQk ≤
∑

{k,m}∈δ(k)

HQ
k,m(ek, fk, em, fm) ≤ UQ

k ∀k

V L
k ≤ ‖(ek, fk)‖ ≤ V U

k ∀k
vk =

∑
{k,m}∈δ(k)

HP
k,m(ek, fk, em, fm) ∀k

wk = Fk(vk)



A classical problem: fixed-charge network flows

Setting: a directed graph G, and

• At each arc (i, j) a capacity uij, a fixed cost kij and a variable cost cij.

• At each vertex i, a net supply bi. We assume
∑

i bi = 0
(so bi < 0 means i has demand).

• By paying kij the capacity of (i, j) becomes uij – else it is zero.

• The per-unit flow cost on (i, j) is cij.

Problem: At minimum cost, send flow bi out of each node i.

Knapsack problem (subset sum) is a special case where G is a caterpillar.
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Xu = variables associated with u
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Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

• Each variable is associated with some vertex.
Xu = variables associated with u

• Each constraint is associated with some vertex.
A constraint associated with u ∈ V (G) is of the form∑

{u,v}∈δ(u)

puv(Xu ∪Xv) ≥ 0

where puv() is a polynomial

• For any xj, {u ∈ V (G) : xj ∈ Xu} induces a connected subgraph of G

• All variables in [0, 1], or binary

• Linear objective

Density: max number of variables + constraints at any vertex

ACOPF: density = 4, FCNF: density = 4



Theorem

Given a problem on a graph with

• treewidth w,

• density d,

•max. degree of a polynomial puv: π,

• n vertices,

and any fixed 0 < ε < 1,

there is a linear program of size (rows + columns) O(πwdε−w n)
whose feasibility and optimality error is O(ε)



Theorem

Given a problem on a graph with

• treewidth w,

• density d,

•max. degree of a polynomial puv: π,

• n vertices,

and any fixed 0 < ε < 1,

there is a linear program of size (rows + columns) O(πwdε−w n)
whose feasibility and optimality error is O(ε)

• Problem feasible → LP ε-feasible
additive error = ε times L1 norm of constraint
and objective value changes by ε times L1 norm of objective

• And viceversa



Simple example: subset-sum problem

Input: positive integers p1, p2, . . . , pn.

Problem: find a solution to:

n∑
j=1

pjxj =
1

2

n∑
j=1

pj

xj(1− xj) = 0, ∀j

(weakly) NP-hard

This is a network polynomial problem on a star – so treewidth 1.

But

{0, 1} solutions with error
(

1
2

∑n
j=1 pj

)
ε in time polynomial in ε−1



More general: (Basic polynomially-constrained mixed-integer LP)

min cTx

s.t. pi(x) ≥ 0 1 ≤ i ≤ m

xj ∈ {0, 1} ∀j ∈ I, 0 ≤ xj ≤ 1, otherwise

Each pi(x) is a polynomial.

Theorem

For any instance where

• the intersection graph has treewidth w,

•max. degree of any pi(x) is π,

• n variables,

and any fixed 0 < ε < 1, there is a linear program of size (rows +
columns) O(πwε−w−1 n) whose feasibility and optimality error is O(ε)
(abridged).



Intersection graph of a constraint system: (Fulkerson? (1962?))

• Has a vertex for every variably xj

• Has an edge {xi, xj} whenever xi and xj appear in the same constraint

Example. Consider the NPO

x21 + x22 + 2x23 ≤ 1

x21 − x23 + x4 ≥ 0,

x3x4 + x35 − x6 ≥ 1/2

0 ≤ xj ≤ 1, 1 ≤ j ≤ 5, x6 ∈ {0, 1}.

x
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x
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x
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x
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x
4

x
5

x
3

a

b

c

d
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6x



Main technique: approximation through pure-binary
problems

Glover, 1975 (abridged)

Let x be a variable, with bounds 0 ≤ x ≤ 1. Let 0 < γ < 1. Then we
can approximate

x ≈
∑L

h=1 2−hyh

where each yh is a binary variable. In fact, choosing L = dlog2 γ
−1e,

we have

x ≤
∑L

h=1 2−hyh ≤ x+ γ.

→ Given a mixed-integer polynomially constrained LP
apply this technique to each continuous variable xj



Mixed-integer polynomially-constrained LP:

(P) min cTx

s.t. pi(x) ≥ 0 1 ≤ i ≤ m

xj ∈ {0, 1} ∀j ∈ I, 0 ≤ xj ≤ 1, otherwise

substitute: ∀j /∈ I, xj →
∑L

h=1 2−h yh,j, where each yh,j ∈ {0, 1}

L ≈ log2 γ
−1



Mixed-integer polynomially-constrained LP:

(P) min cTx

s.t. pi(x) ≥ 0 1 ≤ i ≤ m

xj ∈ {0, 1} ∀j ∈ I, 0 ≤ xj ≤ 1, otherwise

substitute: ∀j /∈ I, xj →
∑L

h=1 2−h yh,j, where each yh,j ∈ {0, 1}

L ≈ log2 γ
−1

p(x̂) ≥ 0, |x̂j −
∑L

h=1 2−h ŷh,j| ≤ γ ⇒ p(ŷ) ≥ −‖p‖1(1− (1− γ)π)

• π = degree of p(x)

• ‖p‖1 = 1-norm of coefficients of p(x)

•−‖p‖1(1− (1− γ)π) ≈ −‖p‖1π γ



Mixed-integer polynomially-constrained LP:

(P) min cTx

s.t. pi(x) ≥ 0 1 ≤ i ≤ m

xj ∈ {0, 1} ∀j ∈ I, 0 ≤ xj ≤ 1, otherwise

substitute: ∀j /∈ I, xj →
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L ≈ log2 γ
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Approximation: pure-binary polynomially-constrained LP:

(Q) min c̄Ty
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Mixed-integer polynomially-constrained LP:

(P) min cTx

s.t. pi(x) ≥ 0 1 ≤ i ≤ m

xj ∈ {0, 1} ∀j ∈ I, 0 ≤ xj ≤ 1, otherwise

substitute: ∀j /∈ I, xj →
∑L

h=1 2−h yh,j, where each yh,j ∈ {0, 1}

L ≈ log2 πε
−1

Approximation: pure-binary polynomially-constrained LP:

(Q) min c̄Ty

s.t. p̄i(y) ≥ −‖pi‖1(1− (1− γ)π) 1 ≤ i ≤ m

xj ∈ {0, 1} ∀j ∈ I, 0 ≤ xj ≤ 1, otherwise

Intersection graph of P has treewidth ≤ ω ⇒
Intersection graph of Q has treewidth ≤ Lω



Pure binary problems

• n binary variables and m constraints.

• Constraint i is given by k[i] ⊆ {1, . . . , n} and Si ⊆ {0, 1}k[i].

1. Constraint states: subvector xk[i] ∈ Si.
2. Si given by a membership oracle

• The problem is to minimize a linear function cTx, over x ∈ {0, 1}n, and
subject to all constraint i, 1 ≤ i ≤ m.
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Pure binary problems

• n binary variables and m constraints.

• Constraint i is given by k[i] ⊆ {1, . . . , n} and Si ⊆ {0, 1}k[i].

1. Constraint states: subvector xk[i] ∈ Si.
2. Si given by a membership oracle

• The problem is to minimize a linear function cTx, over x ∈ {0, 1}n, and
subject to all constraint i, 1 ≤ i ≤ m.

Theorem. If intersection graph has treewidth ≤W , then:
there is an LP formulation with O(2Wn) variables and constraints.

• Not explicitly stated, but can be obtained using methods from Laurent
(2010)

• “Cones of zeta functions” approach of Lovasz and Schrijver.

• Poly-time algorithm: old result.



Pure binary problems

min cTx

s.t. xk[i] ∈ Si 1 ≤ i ≤ m,

x ∈ {0, 1}n

Theorem. If intersection graph has treewidth ≤W , then:
there is an LP formulation with O(2Wn) variables and constraints.
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An alternative approach?

min cTx

s.t. xk[i] ∈ Si 1 ≤ i ≤ m,

x ∈ {0, 1}n

conv{y ∈ {0, 1}k[i] : y ∈ Si} given by Aix ≥ bi

min cTx

s.t. Aixk[i] ≥ bi 1 ≤ i ≤ m,

x ∈ {0, 1}n

But: Bárany, Pór (2001):

for d large enough, there exist 0,1-polyhedra in Rd with(
d

log d

)d/4
facets



Corollary: (polynomially-constrained mixed-integer LP)

min cTx

s.t. pi(x) ≥ 0 1 ≤ i ≤ m

xj ∈ {0, 1} ∀j ∈ I, 0 ≤ xj ≤ 1, otherwise

Each pi(x) is a polynomial.

Theorem

For any instance where

• the intersection graph has treewidth w,

•max. degree of any pi(x) is π,

• n variables,

and any fixed 0 < ε < 1, there is a linear program of size (rows +
columns) O(πwε−w−1 n) whose feasibility and optimality error is O(ε)
(abridged).



Application? Mixed-integer Network Polynomial
Optimization problems

Input: an undirected graph G.

• Variables and constraints associated with vertices.

•Xu = variables associated with u.

• A constraint associated with u ∈ V (G) is of the form∑
{u,v}∈δ(u)

puv(Xu ∪Xv) ≥ 0

where puv() is a polynomial

• All variables in [0, 1], or binary.

• Linear objective

• Interesting case: G of bounded treewidth.
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Trouble! Treewidth of G 6= treewidth of intersection graph of constraints



Application? Mixed-integer Network Polynomial
Optimization problems

Input: an undirected graph G.

• Variables and constraints associated with vertices.

•Xu = variables associated with u.

• A constraint associated with u ∈ V (G) is of the form∑
{u,v}∈δ(u)

puv(Xu ∪Xv) ≥ 0

where puv() is a polynomial

• All variables in [0, 1], or binary.

• Linear objective

• Interesting case: G of bounded treewidth.

x

x
x

1

2
k

k∑
j=1

ajxj ≥ a0, → k-clique



Vertex splitting

How do we deal with

∑
{u,v}∈δ(u) puv(Xu ∪Xv) ≥ 0 when |δ(u)| large?
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Vertex splitting

How do we deal with

∑
{u,v}∈δ(u) puv(Xu ∪Xv) ≥ 0 when |δ(u)| large?

u

. . .
..
.

.. .

A B

u
A

u
B∑

{u,v}∈A

pu,v(Xu ∪Xv) + y ≥ 0 assoc. with uA

∑
{u,v}∈B

pu,v(Xu ∪Xv) − y = 0. assoc. with uB

(y is a new variable associated with either uA or uB)



Does not work

k
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2

1
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3
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k

2

k

1 2
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2

k

k−1



A better idea

k

1

k

2

1

1

2

3

4
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k

k−1
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2

k3

k−1



Theorem

Given a graph of treewidth ≤ ω, there is a sequence of vertex splittings
such that the resulting graph

• Has treewidth ≤ O(ω)

• Has maximum degree ≤ 3.



Theorem

Given a graph of treewidth ≤ ω, there is a sequence of vertex splittings
such that the resulting graph

• Has treewidth ≤ O(ω)

• Has maximum degree ≤ 3.

Perhaps known to graph minors people?

Corollary (abridged)

Given a network polynomial optimization problem on a graph G, with
treewidth ≤ ω there is an equivalent problem on a graph H with
treewidth ≤ O(ω) and max degree 3.

Corollary. The intersection graph has treewidth ≤ O(ω).



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:

(1) For each vertex v of G, the set {t ∈ V (T ) : v ∈ Qt} is a subtree
of T , denoted Tv.

(2) For each edge {u, v} of G, the two subtrees Tu and Tv intersect.

• The width of (T,Q) is maxt∈T |Qt| − 1.
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→ two subtrees Tu, Tv may overlap even if {u, v} is not an edge of G
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must intersect only here

for some edge {u,v}

wlog every edge {u, v} ∈ E(G) found in some leaf of Tu
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