LP formulations for sparse polynomial optimization problems

Daniel Bienstock and Gonzalo Muñoz, Columbia University

An application: the Optimal Power Flow problem (ACOPF)

 Input: an undirected graph G.- For every vertex i, two variables: $\boldsymbol{e}_{\boldsymbol{i}}$ and $\boldsymbol{f}_{\boldsymbol{i}}$
- For every edge $\{k, m\}$, four (specific) quadratics:

$$
\begin{aligned}
& H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right), \quad H_{k, m}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \\
& H_{m, k}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right), \quad H_{m, k}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \\
& \min \quad \sum_{k} F_{k}\left(\sum_{\{k, m\} \in \delta(k)} H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right)\right) \\
& \text { s.t. } \quad L_{k}^{P} \leq \sum_{\{k, m\} \in \delta(k)} H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \leq U_{k}^{P} \quad \forall k \\
& L_{k}^{Q} \leq \sum_{\{k, m\} \in \delta(k)} H_{k, m}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \leq U_{k}^{Q} \quad \forall k \\
& V_{k}^{L} \leq\left\|\left(e_{k}, f_{k}\right)\right\| \leq V_{k}^{U} \quad \forall k .
\end{aligned}
$$

Function F_{k} in the objective: convex quadratic

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.
Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.
Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.
Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

$$
\begin{array}{ll}
\min & \sum_{k} F_{k}\left(\sum_{\{k, m\} \in \delta(k)} H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right)\right) \\
\text { s.t. } & L_{k}^{P} \leq \sum_{\{k, m\} \in \delta(k)} H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \leq U_{k}^{P} \quad \forall k \\
& L_{k}^{Q} \leq \sum_{\{k, m\} \in \delta(k)} H_{k, m}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \leq U_{k}^{Q} \quad \forall k \\
& V_{k}^{L} \leq\left\|\left(e_{k}, f_{k}\right)\right\| \leq V_{k}^{U} \quad \forall k .
\end{array}
$$

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.
Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.
Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, $2009+$ many others)

Reformulation of ACOPF:

$$
\begin{aligned}
\min & F \bullet W \\
\text { s.t. } & A_{i} \bullet W \leq b_{i} \quad i=1,2, \ldots \\
& W \succeq 0, \quad W \text { of rank } 1 .
\end{aligned}
$$

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.
Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.
Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, $2009+$ many others)

SDP Relaxation of OPF:

$$
\begin{aligned}
\min & F \bullet W \\
\text { s.t. } & A_{i} \bullet W \leq b_{i} \quad i=1,2, \ldots \\
& W \succeq 0 .
\end{aligned}
$$

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$
\begin{array}{cl}
\min & F \bullet W \\
\text { s.t. } & A_{i} \bullet W \leq b_{i} \quad i=1,2, \ldots \\
& W \succeq 0 .
\end{array}
$$

Fact: The SDP relaxation almost always has a rank-1 solution!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$
\begin{array}{cl}
\min & F \bullet W \\
\text { s.t. } & A_{i} \bullet W \leq b_{i} \quad i=1,2, \ldots \\
& W \succeq 0 .
\end{array}
$$

Fact: The SDP relaxation sometimes has a rank-1 solution!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.
Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.
Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, $2009+$ many others)

SDP Relaxation of OPF:

$$
\begin{aligned}
\min & F \bullet W \\
\text { s.t. } & A_{i} \bullet W \leq b_{i} \quad i=1,2, \ldots \\
& W \succeq 0 .
\end{aligned}
$$

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is always very tight!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$
\begin{array}{cl}
\min & F \bullet W \\
\text { s.t. } & A_{i} \bullet W \leq b_{i} \quad i=1,2, \ldots \\
& W \succeq 0 .
\end{array}
$$

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is frequently rather tight!!

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (strongly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$
\begin{aligned}
\min & F \bullet W \\
\text { s.t. } & A_{i} \bullet W \leq b_{i} \quad i=1,2, \ldots \\
& W \succeq 0 .
\end{aligned}
$$

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: But it is usually good!!

But: the SDP relaxation is always slow on large graphs

- Real-life grids $\rightarrow>10^{4}$ vertices
- SDP relaxation of OPF does not terminate But...

But: the SDP relaxation is always slow on large graphs

- Real-life grids $\rightarrow>10^{4}$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Definition 1: A graph has treewidth $\leq \boldsymbol{w}$ if it has a chordal supergraph with clique number $\leq \boldsymbol{w}+\mathbf{1}$

But: the SDP relaxation is always slow on large graphs

- Real-life grids $\rightarrow>10^{4}$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth $\leq \boldsymbol{w}$ if it is a subgraph of an intersection graph of subtrees of a tree, with $\leq \boldsymbol{w}+\mathbf{1}$ subtrees overlapping at any vertex

But: the SDP relaxation is always slow on large graphs

- Real-life grids $\rightarrow>10^{4}$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth $\leq \boldsymbol{w}$ if it is a subgraph of an intersection graph of subtrees of a tree, with $\leq \boldsymbol{w}+\mathbf{1}$ subtrees overlapping at any vertex
(Seymour and Robertson, early 1980s)

Tree-width

Let \boldsymbol{G} be an undirected graph with vertices $\boldsymbol{V}(\boldsymbol{G})$ and edges $\boldsymbol{E}(\boldsymbol{G})$.
A tree-decomposition of \boldsymbol{G} is a pair (T, Q) where:

- \boldsymbol{T} is a tree. Not a subtree of \boldsymbol{G}, just a tree
- For each vertex \boldsymbol{t} of \boldsymbol{T}, Q_{t} is a subset of $\boldsymbol{V}(\boldsymbol{G})$. These subsets satisfy the two properties:
(1) For each vertex \boldsymbol{v} of \boldsymbol{G}, the set $\left\{\boldsymbol{t} \in \boldsymbol{V}(\boldsymbol{T}): \boldsymbol{v} \in Q_{t}\right\}$ is a subtree of \boldsymbol{T}, denoted $\boldsymbol{T}_{\boldsymbol{v}}$.
(2) For each edge $\{\boldsymbol{u}, \boldsymbol{v}\}$ of \boldsymbol{G}, the two subtrees $\boldsymbol{T}_{\boldsymbol{u}}$ and $\boldsymbol{T}_{\boldsymbol{v}}$ intersect.
- The width of (T, Q) is $\max _{t \in T}\left|Q_{t}\right|-1$.

\rightarrow two subtrees $\boldsymbol{T}_{\boldsymbol{u}}, \boldsymbol{T}_{\boldsymbol{v}}$ may overlap even if $\{\boldsymbol{u}, \boldsymbol{v}\}$ is not an edge of \boldsymbol{G}

Tree-width

Let \boldsymbol{G} be an undirected graph with vertices $\boldsymbol{V}(\boldsymbol{G})$ and edges $\boldsymbol{E}(\boldsymbol{G})$.
A tree-decomposition of \boldsymbol{G} is a pair (T, Q) where:

- \boldsymbol{T} is a tree. Not a subtree of \boldsymbol{G}, just a tree
- For each vertex \boldsymbol{t} of \boldsymbol{T}, Q_{t} is a subset of $\boldsymbol{V}(\boldsymbol{G})$. These subsets satisfy the two properties:
(1) For each vertex \boldsymbol{v} of \boldsymbol{G}, the set $\left\{\boldsymbol{t} \in \boldsymbol{V}(\boldsymbol{T}): \boldsymbol{v} \in Q_{t}\right\}$ is a subtree of \boldsymbol{T}, denoted $\boldsymbol{T}_{\boldsymbol{v}}$.
(2) For each edge $\{\boldsymbol{u}, \boldsymbol{v}\}$ of \boldsymbol{G}, the two subtrees $\boldsymbol{T}_{\boldsymbol{u}}$ and $\boldsymbol{T}_{\boldsymbol{v}}$ intersect.
- The width of (T, Q) is $\max _{t \in T}\left|Q_{t}\right|-1$.

But: the SDP relaxation is always slow on large graphs

- Real-life grids $\rightarrow>10^{4}$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with $\approx 3 \times 10^{3}$ vertices: $\rightarrow 20$ minutes runtime

But: the SDP relaxation is always slow on large graphs

- Real-life grids $\rightarrow>10^{4}$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with $\approx 3 \times 10^{3}$ vertices: $\rightarrow 20$ minutes runtime
\rightarrow Perhaps low tree-width yields direct algorithms for ACOPF itself?
That is to say, not for a relaxation?

Much previous work using structured sparsity

- Bienstock and Özbay (Sherali-Adams + treewidth)
- Wainwright and Jordan (Sherali-Adams + treewidth)
- Grimm, Netzer, Schweighofer
- Laurent (Sherali-Adams + treewidth)
- Lasserre et al (moment relaxation + treewidth)
- Waki, Kim, Kojima, Muramatsu
older work ...
- Lauritzen (1996): tree-junction theorem
- Bertele and Brioschi (1972): nonserial dynamic programming
- Bounded tree-width in combinatorial optimization (early 1980s) (Arnborg et al plus too many authors)
- Fulkerson and Gross (1965): matrices with consecutive ones

ACOPF, again

Input: an undirected graph G.

- For every vertex i, two variables: $\boldsymbol{e}_{\boldsymbol{i}}$ and $\boldsymbol{f}_{\boldsymbol{i}}$
- For every edge $\{k, m\}$, four (specific) quadratics:

$$
\begin{aligned}
& H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right), \quad H_{k, m}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \\
& H_{m, k}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right), \quad H_{m, k}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \\
& \min \sum_{k} F_{k}\left(\sum_{\{k, m\} \in \delta(k)} H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right)\right) \\
& \text { s.t. } L_{k}^{P} \leq \sum_{\{k, m\} \in \delta(k)} H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \leq U_{k}^{P} \quad \forall k \\
& L_{k}^{Q} \leq \sum_{\{k, m\} \in \delta(k)} H_{k, m}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \leq U_{k}^{Q} \quad \forall k \\
& V_{k}^{L} \leq\left\|\left(e_{k}, f_{k}\right)\right\| \leq V_{k}^{U} \quad \forall k .
\end{aligned}
$$

Function F_{k} in the objective: convex quadratic

ACOPF, again

Input: an undirected graph G.

- For every vertex i, two variables: $\boldsymbol{e}_{\boldsymbol{i}}$ and $\boldsymbol{f}_{\boldsymbol{i}}$
- For every edge $\{k, m\}$, four (specific) quadratics:

$$
\begin{array}{ll}
H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right), & H_{k, m}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \\
H_{m, k}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right), & H_{m, k}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right)
\end{array}
$$

$$
\begin{array}{ll}
\min & \sum_{k} w_{k} \\
\text { s.t. } & L_{k}^{P} \leq \sum_{\{k, m\} \in \delta(k)} H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \leq U_{k}^{P} \quad \forall k \\
& L_{k}^{Q} \leq \sum_{\{k, m\} \in \delta(k)} H_{k, m}^{Q}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \leq U_{k}^{Q} \quad \forall k \\
& V_{k}^{L} \leq\left\|\left(e_{k}, f_{k}\right)\right\| \leq V_{k}^{U} \quad \forall k \\
& v_{k}=\sum_{\{k, m\} \in \delta(k)} H_{k, m}^{P}\left(e_{k}, f_{k}, e_{m}, f_{m}\right) \quad \forall k \\
& w_{k}=F_{k}\left(v_{k}\right)
\end{array}
$$

A classical problem: fixed-charge network flows

Setting: a directed graph G, and

- At each arc (i, j) a capacity $u_{i j}$, a fixed cost $k_{i j}$ and a variable cost $c_{i j}$.
- At each vertex i, a net supply b_{i}. We assume $\sum_{i} b_{i}=0$ (so $b_{i}<0$ means i has demand).
- By paying $k_{i j}$ the capacity of (i, j) becomes $u_{i j}$ - else it is zero.
- The per-unit flow cost on (i, j) is $c_{i j}$.

Problem: At minimum cost, send flow b_{i} out of each node i.

Knapsack problem (subset sum) is a special case where G is a caterpillar.

Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Each variable is associated with some vertex. $X_{u}=$ variables associated with u

Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Each variable is associated with some vertex.
$X_{u}=$ variables associated with u
- Each constraint is associated with some vertex.

A constraint associated with $u \in V(G)$ is of the form

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0
$$

where $p_{u v}()$ is a polynomial

Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Each variable is associated with some vertex.
$X_{u}=$ variables associated with u
- Each constraint is associated with some vertex.

A constraint associated with $u \in V(G)$ is of the form

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0
$$

where $p_{u v}()$ is a polynomial

- For any $x_{j},\left\{u \in V(G): x_{j} \in X_{u}\right\}$ induces a connected subgraph of G
- All variables in $[0,1]$, or binary
- Linear objective

Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Each variable is associated with some vertex.
$X_{u}=$ variables associated with u
- Each constraint is associated with some vertex.

A constraint associated with $u \in V(G)$ is of the form

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0
$$

where $p_{u v}()$ is a polynomial

- For any $x_{j},\left\{u \in V(G): x_{j} \in X_{u}\right\}$ induces a connected subgraph of G
- All variables in $[0,1]$, or binary
- Linear objective

Density: max number of variables + constraints at any vertex
ACOPF: density $=4$, FCNF: density $=4$

Theorem

Given a problem on a graph with

- treewidth w,
- density d,
- max. degree of a polynomial $p_{u v}$: $\boldsymbol{\pi}$,
- n vertices,
and any fixed $0<\epsilon<1$,
there is a linear program of size (rows + columns) $O\left(\pi^{w d} \epsilon^{-w} n\right)$ whose feasibility and optimality error is $\boldsymbol{O}(\boldsymbol{\epsilon})$

Theorem

Given a problem on a graph with

- treewidth w,
- density \boldsymbol{d},
- max. degree of a polynomial $p_{u v}$: $\boldsymbol{\pi}$,
- \boldsymbol{n} vertices,
and any fixed $\mathbf{0}<\boldsymbol{\epsilon}<\mathbf{1}$,
there is a linear program of size (rows + columns) $\boldsymbol{O}\left(\boldsymbol{\pi}^{w d} \epsilon^{-w} n\right)$ whose feasibility and optimality error is $\boldsymbol{O}(\boldsymbol{\epsilon})$
- Problem feasible \rightarrow LP ϵ-feasible
additive error $=\epsilon$ times L_{1} norm of constraint and objective value changes by ϵ times L_{1} norm of objective
- And viceversa

Simple example: subset-sum problem

Input: positive integers $p_{1}, p_{2}, \ldots, p_{n}$.

Problem: find a solution to:

$$
\begin{aligned}
& \sum_{j=1}^{n} p_{j} x_{j}=\frac{1}{2} \sum_{j=1}^{n} p_{j} \\
& x_{j}\left(1-x_{j}\right)=0, \quad \forall j
\end{aligned}
$$

(weakly) NP-hard
This is a network polynomial problem on a star - so treewidth 1 .

But

$\{0,1\}$ solutions with error $\left(\frac{1}{2} \sum_{j=1}^{n} p_{j}\right) \epsilon$ in time polynomial in ϵ^{-1}

More general: (Basic polynomially-constrained mixed-integer LP)
$\min c^{T} x$

$$
\begin{array}{ll}
\text { s.t. } & p_{i}(x) \geq 0 \quad 1 \leq i \leq m \\
& x_{j} \in\{0,1\} \quad \forall j \in I, \quad 0 \leq x_{j} \leq 1, \quad \text { otherwise }
\end{array}
$$

Each $\boldsymbol{p}_{\boldsymbol{i}}(\boldsymbol{x})$ is a polynomial.

Theorem

For any instance where

- the intersection graph has treewidth \boldsymbol{w},
- max. degree of any $p_{i}(x)$ is $\boldsymbol{\pi}$,
- \boldsymbol{n} variables,
and any fixed $0<\epsilon<1$, there is a linear program of size (rows + columns) $\boldsymbol{O}\left(\boldsymbol{\pi}^{\boldsymbol{w}} \boldsymbol{\epsilon}^{-\boldsymbol{w}-\mathbf{1}} \boldsymbol{n}\right)$ whose feasibility and optimality error is $\boldsymbol{O}(\boldsymbol{\epsilon})$ (abridged).

Intersection graph of a constraint system: (Fulkerson? (1962?))

- Has a vertex for every variably x_{j}
- Has an edge $\left\{x_{i}, x_{j}\right\}$ whenever x_{i} and x_{j} appear in the same constraint Example. Consider the NPO

$$
\begin{aligned}
& x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2} \leq 1 \\
& x_{1}^{2}-x_{3}^{2}+x_{4} \geq 0 \\
& x_{3} x_{4}+x_{5}^{3}-x_{6} \geq 1 / 2 \\
& 0 \leq x_{j} \leq 1, \quad 1 \leq j \leq 5, \quad x_{6} \in\{0,1\}
\end{aligned}
$$

Main technique: approximation through pure-binary problems

Glover, 1975 (abridged)
Let \boldsymbol{x} be a variable, with bounds $\mathbf{0} \leq \boldsymbol{x} \leq \mathbf{1}$. Let $\mathbf{0}<\gamma<\mathbf{1}$. Then we can approximate

$$
\boldsymbol{x} \approx \sum_{h=1}^{L} 2^{-h} y_{h}
$$

where each $\boldsymbol{y}_{\boldsymbol{h}}$ is a binary variable. In fact, choosing $L=\left\lceil\log _{2} \gamma^{-1}\right\rceil$, we have

$$
x \leq \sum_{h=1}^{L} 2^{-h} y_{h} \leq x+\gamma
$$

\rightarrow Given a mixed-integer polynomially constrained LP apply this technique to each continuous variable x_{j}

Mixed-integer polynomially-constrained LP:
(P) $\quad \min c^{T} x$

$$
\begin{array}{ll}
\text { s.t. } & p_{i}(x) \geq 0 \quad 1 \leq i \leq m \\
& x_{j} \in\{0,1\} \quad \forall j \in I, \quad 0 \leq x_{j} \leq 1, \quad \text { otherwise }
\end{array}
$$

substitute: $\forall j \notin I, \quad \boldsymbol{x}_{j} \rightarrow \sum_{h=1}^{L} \mathbf{2}^{-h} \boldsymbol{y}_{h, \boldsymbol{j}}$, where each $\boldsymbol{y}_{h, j} \in\{0,1\}$
$L \approx \log _{2} \gamma^{-1}$

Mixed-integer polynomially-constrained LP:
(P) $\min c^{T} x$

$$
\begin{array}{ll}
\text { s.t. } & p_{i}(x) \geq 0 \quad 1 \leq i \leq m \\
& x_{j} \in\{0,1\} \quad \forall j \in I, \quad 0 \leq x_{j} \leq 1, \quad \text { otherwise }
\end{array}
$$

substitute: $\forall j \notin I, x_{j} \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h, j}$, where each $\boldsymbol{y}_{h, j} \in\{0,1\}$
$L \approx \log _{2} \gamma^{-1}$
$p(\hat{x}) \geq 0,\left|\hat{x}_{j}-\sum_{h=1}^{L} 2^{-h} \hat{y}_{h, j}\right| \leq \gamma \Rightarrow p(\hat{y}) \geq-\|p\|_{1}\left(1-(1-\gamma)^{\pi}\right)$

- $\pi=$ degree of $p(x)$
- $\|p\|_{1}=1$-norm of coefficients of $p(x)$
- $-\|p\|_{1}\left(1-(1-\gamma)^{\pi}\right) \approx-\|p\|_{1} \pi \gamma$

Mixed-integer polynomially-constrained LP:
(P) $\min c^{T} x$

$$
\begin{array}{ll}
\text { s.t. } & p_{i}(x) \geq 0 \quad 1 \leq i \leq m \\
& x_{j} \in\{0,1\} \quad \forall j \in I, \quad 0 \leq x_{j} \leq 1, \quad \text { otherwise }
\end{array}
$$

substitute: $\forall j \notin I, x_{j} \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h, j}$, where each $\boldsymbol{y}_{h, j} \in\{0,1\}$
$L \approx \log _{2} \gamma^{-1}$
Approximation: pure-binary polynomially-constrained LP:
(Q) $\min \bar{c}^{T} y$

$$
\begin{array}{ll}
\text { s.t. } & \bar{p}_{i}(y) \geq-\left\|p_{i}\right\|_{1}\left(1-(1-\gamma)^{\pi}\right) \quad 1 \leq i \leq m \\
& x_{j} \in\{0,1\} \quad \forall j \in I, \quad 0 \leq x_{j} \leq 1, \quad \text { otherwise }
\end{array}
$$

Mixed-integer polynomially-constrained LP:
(P) $\min c^{T} x$

$$
\begin{array}{ll}
\text { s.t. } & p_{i}(x) \geq 0 \quad 1 \leq i \leq m \\
& x_{j} \in\{0,1\} \quad \forall j \in I, \quad 0 \leq x_{j} \leq 1, \quad \text { otherwise }
\end{array}
$$

substitute: $\forall j \notin I, \boldsymbol{x}_{j} \rightarrow \sum_{h=1}^{L} 2^{-h} \boldsymbol{y}_{h, j}$, where each $\boldsymbol{y}_{h, j} \in\{0,1\}$
$L \approx \log _{2} \pi \epsilon^{-1}$
Approximation: pure-binary polynomially-constrained LP:
(Q) $\min \bar{c}^{T} y$

$$
\begin{array}{ll}
\text { s.t. } & \bar{p}_{i}(y) \geq-\left\|p_{i}\right\|_{1}\left(1-(1-\gamma)^{\pi}\right) \quad 1 \leq i \leq m \\
& x_{j} \in\{0,1\} \quad \forall j \in I, \quad 0 \leq x_{j} \leq 1, \quad \text { otherwise }
\end{array}
$$

Intersection graph of P has treewidth $\leq \boldsymbol{\omega} \Rightarrow$ Intersection graph of Q has treewidth $\leq \boldsymbol{L} \boldsymbol{\omega}$

Pure binary problems

- n binary variables and m constraints.
- Constraint i is given by $k[i] \subseteq\{1, \ldots, n\}$ and $S^{i} \subseteq\{0,1\}^{k[i]}$. 1. Constraint states: subvector $x_{k[i]} \in S^{i}$.

2. S^{i} given by a membership oracle

- The problem is to minimize a linear function $c^{T} x$, over $x \in\{0,1\}^{n}$, and subject to all constraint $i, \quad 1 \leq i \leq m$.

Pure binary problems

- n binary variables and m constraints.
- Constraint i is given by $k[i] \subseteq\{1, \ldots, n\}$ and $S^{i} \subseteq\{0,1\}^{k[i]}$. 1. Constraint states: subvector $x_{k[i]} \in S^{i}$.

2. S^{i} given by a membership oracle

- The problem is to minimize a linear function $c^{T} x$, over $x \in\{0,1\}^{n}$, and subject to all constraint $i, \quad 1 \leq i \leq m$.

Theorem. If intersection graph has treewidth $\leq \boldsymbol{W}$, then: there is an LP formulation with $\boldsymbol{O}\left(2^{W} \boldsymbol{n}\right)$ variables and constraints.

Pure binary problems

- n binary variables and m constraints.
- Constraint i is given by $k[i] \subseteq\{1, \ldots, n\}$ and $S^{i} \subseteq\{0,1\}^{k[i]}$. 1. Constraint states: subvector $x_{k[i]} \in S^{i}$.

2. S^{i} given by a membership oracle

- The problem is to minimize a linear function $c^{T} x$, over $x \in\{0,1\}^{n}$, and subject to all constraint $i, \quad 1 \leq i \leq m$.

Theorem. If intersection graph has treewidth $\leq \boldsymbol{W}$, then: there is an LP formulation with $\boldsymbol{O}\left(2^{W} n\right)$ variables and constraints.

- Not explicitly stated, but can be obtained using methods from Laurent (2010)
- "Cones of zeta functions" approach of Lovasz and Schrijver.
- Poly-time algorithm: old result.

Pure binary problems

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x_{k[i]} \in S^{i} \quad 1 \leq i \leq m \\
& x \in\{0,1\}^{n}
\end{array}
$$

Theorem. If intersection graph has treewidth $\leq \boldsymbol{W}$, then: there is an LP formulation with $O\left(2^{W} n\right)$ variables and constraints.

An alternative approach?

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & x_{k[i]} \in S^{i} \quad 1 \leq i \leq m, \\
& x \in\{0,1\}^{n}
\end{array}
$$

An alternative approach?

$$
\begin{aligned}
& \min c^{T} x \\
& \text { s.t. } x_{k[i]} \in S^{i} \quad 1 \leq i \leq m \\
& x \in\{0,1\}^{n} \\
& \operatorname{conv}\left\{y \in\{0,1\}^{k[i]}: y \in S^{i}\right\} \text { given by } \boldsymbol{A}^{i} \boldsymbol{x} \geq \boldsymbol{b}^{i}
\end{aligned}
$$

An alternative approach?

$$
\begin{aligned}
& \min c^{T} x \\
& \text { s.t. } x_{k[i]} \in S^{i} \quad 1 \leq i \leq m, \\
& x \in\{0,1\}^{n} \\
& \operatorname{conv}\left\{y \in\{0,1\}^{k[i]}: y \in S^{i}\right\} \quad \text { given by } A^{i} x \geq b^{i} \\
& \\
& \min c^{T} x \\
& \text { s.t. } A^{i} x_{k[i]} \geq b^{i} \quad 1 \leq i \leq m, \\
& x \in\{0,1\}^{n}
\end{aligned}
$$

An alternative approach?

$$
\begin{aligned}
& \min c^{T} x \\
& \text { s.t. } x_{k[i]} \in S^{i} \quad 1 \leq i \leq m \\
& x \in\{0,1\}^{n} \\
& \operatorname{conv}\left\{y \in\{0,1\}^{k[i]}: y \in S^{i}\right\} \quad \text { given by } \boldsymbol{A}^{i} \boldsymbol{x} \geq \boldsymbol{b}^{i} \\
& \\
& \min c^{T} x \\
& \text { s.t. } A^{i} x_{k[i]} \geq b^{i} \quad 1 \leq i \leq m \\
& x \in\{0,1\}^{n}
\end{aligned}
$$

But: Bárany, Pór (2001):
for d large enough, there exist 0,1 -polyhedra in \mathbb{R}^{d} with

$$
\left(\frac{d}{\log d}\right)^{d / 4} \quad \text { facets }
$$

Corollary: (polynomially-constrained mixed-integer LP)

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & p_{i}(x) \geq 0 \quad 1 \leq i \leq m \\
& x_{j} \in\{0,1\} \quad \forall j \in I, \quad 0 \leq x_{j} \leq 1, \quad \text { otherwise }
\end{aligned}
$$

Each $\boldsymbol{p}_{\boldsymbol{i}}(\boldsymbol{x})$ is a polynomial.

Theorem

For any instance where

- the intersection graph has treewidth \boldsymbol{w},
- max. degree of any $p_{i}(x)$ is $\boldsymbol{\pi}$,
- \boldsymbol{n} variables,
and any fixed $0<\boldsymbol{\epsilon}<1$, there is a linear program of size (rows + columns) $\boldsymbol{O}\left(\boldsymbol{\pi}^{w} \boldsymbol{\epsilon}^{-\boldsymbol{w}-1} \boldsymbol{n}\right)$ whose feasibility and optimality error is $\boldsymbol{O}(\boldsymbol{\epsilon})$ (abridged).

Application? Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Variables and constraints associated with vertices.
- $X_{u}=$ variables associated with u.
- A constraint associated with $u \in V(G)$ is of the form

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0
$$

where $p_{u v}()$ is a polynomial

- All variables in $[0,1]$, or binary.
- Linear objective
- Interesting case: G of bounded treewidth.

Application? Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Variables and constraints associated with vertices.
- $X_{u}=$ variables associated with u.
- A constraint associated with $u \in V(G)$ is of the form

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0
$$

where $p_{u v}()$ is a polynomial

- All variables in $[0,1]$, or binary.
- Linear objective
- Interesting case: G of bounded treewidth.

Trouble! Treewidth of $G \neq$ treewidth of intersection graph of constraints

Application? Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Variables and constraints associated with vertices.
- $X_{u}=$ variables associated with u.
- A constraint associated with $u \in V(G)$ is of the form

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0
$$

where $p_{u v}()$ is a polynomial

- All variables in $[0,1]$, or binary.
- Linear objective
- Interesting case: G of bounded treewidth.

$$
\sum_{j=1}^{k} a_{j} x_{j} \geq a_{0}, \quad \rightarrow \text { k-clique }
$$

Vertex splitting

How do we deal with

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0 \text { when }|\delta(u)| \text { large? }
$$

Vertex splitting

How do we deal with

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0 \text { when }|\boldsymbol{\delta}(\boldsymbol{u})| \text { large? }
$$

Vertex splitting

How do we deal with

$$
\sum_{\{u, v\} \in \delta(u)} p_{u v}\left(X_{u} \cup X_{v}\right) \geq 0 \text { when }|\delta(u)| \text { large? }
$$

$$
\begin{aligned}
& \sum_{\{u, v\} \in A} p_{u, v}\left(X_{u} \cup X_{v}\right)+y \geq 0 \quad \text { assoc. with } u_{A} \\
& \sum_{\{u, v\} \in B} p_{u, v}\left(X_{u} \cup X_{v}\right)-y=0 . \quad \text { assoc. with } u_{B}
\end{aligned}
$$

(y is a new variable associated with either u_{A} or u_{B})

Does not work

A better idea

Theorem

Given a graph of treewidth $\leq \boldsymbol{\omega}$, there is a sequence of vertex splittings such that the resulting graph

- Has treewidth $\leq \boldsymbol{O}(\boldsymbol{\omega})$
- Has maximum degree $\leq \mathbf{3}$.

Theorem

Given a graph of treewidth $\leq \boldsymbol{\omega}$, there is a sequence of vertex splittings such that the resulting graph

- Has treewidth $\leq \boldsymbol{O}(\boldsymbol{\omega})$
- Has maximum degree $\leq \mathbf{3}$.

Perhaps known to graph minors people?

Corollary (abridged)

Given a network polynomial optimization problem on a graph \boldsymbol{G}, with treewidth $\leq \boldsymbol{\omega}$ there is an equivalent problem on a graph \boldsymbol{H} with treewidth $\leq \boldsymbol{O}(\boldsymbol{\omega})$ and max degree $\mathbf{3}$.

Corollary. The intersection graph has treewidth $\leq \boldsymbol{O}(\boldsymbol{\omega})$.

Tree-width

Let \boldsymbol{G} be an undirected graph with vertices $\boldsymbol{V}(\boldsymbol{G})$ and edges $\boldsymbol{E}(\boldsymbol{G})$.
A tree-decomposition of \boldsymbol{G} is a pair (T, Q) where:

- \boldsymbol{T} is a tree. Not a subtree of \boldsymbol{G}, just a tree
- For each vertex \boldsymbol{t} of \boldsymbol{T}, Q_{t} is a subset of $\boldsymbol{V}(\boldsymbol{G})$. These subsets satisfy the two properties:
(1) For each vertex \boldsymbol{v} of \boldsymbol{G}, the set $\left\{\boldsymbol{t} \in \boldsymbol{V}(\boldsymbol{T}): \boldsymbol{v} \in Q_{t}\right\}$ is a subtree of \boldsymbol{T}, denoted $\boldsymbol{T}_{\boldsymbol{v}}$.
(2) For each edge $\{\boldsymbol{u}, \boldsymbol{v}\}$ of \boldsymbol{G}, the two subtrees $\boldsymbol{T}_{\boldsymbol{u}}$ and $\boldsymbol{T}_{\boldsymbol{v}}$ intersect.
- The width of (T, Q) is $\max _{t \in T}\left|Q_{t}\right|-1$.

\rightarrow two subtrees $\boldsymbol{T}_{\boldsymbol{u}}, \boldsymbol{T}_{\boldsymbol{v}}$ may overlap even if $\{\boldsymbol{u}, \boldsymbol{v}\}$ is not an edge of \boldsymbol{G}

each edge $\{\boldsymbol{u}, \boldsymbol{v}\} \in \boldsymbol{E}(\boldsymbol{G})$ found in some vertex of $\boldsymbol{T}_{\boldsymbol{u}}$

wlog every edge $\{\boldsymbol{u}, \boldsymbol{v}\} \in \boldsymbol{E}(\boldsymbol{G})$ found in some leaf of $\boldsymbol{T}_{\boldsymbol{u}}$

