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Cut Generatlng Functlons .
Advantag.. —... 0 ool el cciipeeg - <Utting plane.
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Disadvantage: Handles structured feasible regions.
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S is a closed subset of R" \ {0}.
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Cut Generating Functions
S is a closed subset of R" \ {0}.
Xs(R,P) :={(s,y) e RX x ZL : Rs + Py € S}

where R € Rk p e R

We seek pair of functions
Ys :R" - R s R = R
such that the inequality

K ¢
> s(r)si+ > ws(p)y; > 1
i—1 =1

is valid for any k,¢, R, P.



Cut Generating Functions: Example

n=1, 5= b+ 7Z where b ¢ Z.

Xs(R,P) :={(s,y) € RX x Z% : Rs + Py € S}

where R =[rl, ..., rK], P = [p!,....p ]



Cut Generating Functions: Example

n=1,5=b+7Z where b ¢ Z.

k L

Xs(R,P) :={(s,y) € R x Z£ : Zris;+2pj)g: b+ x}
i—1 =1

where x € Z.
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Cut Generating Functions: Example
n=1S5=>b+7Z where b ¢ Z.

k J4
Xs(R,P):={(s,y) € R x ZL - Y " risi+ Y ply; € S}
i=1 Jj=1
Define

wst) = max{ oo =it ws() = min{ 1 2 2H

then the inequality

k

4
D ws(r)si+ 3 ms(p)y > 1

i=1

is the Gomory Mixed-Integer (GMI) inequality.



Cut Generating Functions: Example
Define

Ws(r) = maX{[b] 1 :r[b]} ms(r) = min {[[lr?]] i:[[;]]}

then the inequality
k ¢

Z¢S(fi)5i + Z?rs(pj)yj >1

i=1 j=1

is the Gomory Mixed-Integer (GMI) inequality.
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Cut Generating Functions

k J4
Xs(R,P):={(s,y) €RE x ZL: Y ris+ Y plyje S}

i=1 j=1
We seek pair of functions
wsiRn—HR s :R" > R

such that the inequality

is valid for any k, ¢, r', p/.



Cut Generating Functions

k J4
Xs(R,P):={(s,y) € Rk x 2% : Y risi+ > ply; € S}

i=1 j=1
We seek pair of functions
Ps :R" - R s RT— R
such that the inequality

k l
> ws(r)si+ > ws(p)y; > 1
i=1 j=1
is valid for any k, ¢, r, p/.

Want minimal valid pairs to remove redundancies.

(¢%7Wg)§(¢5775) = 7%:711577755:775
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Computing with Cut Generating Functions

MAIN GOAL: Find closed form formulas/efficient procedures to
compute with these functions.

Focuson S = (b+Z")N Q where b ¢ 7", Q rational polyhedron.

Let B € R" be a maximal S-free convex set with 0 € int(B).

THEOREM: Maximal S-free convex sets are polyhedra. Thus,
B={xeR":a;-x<1,iel}

Lovasz 1989

Basu, Conforti, Cornuéjols, Zambelli 2010

Dey and Moran 2011
Averkov 2013



Maximal S-free Convex Sets

S =b+7Z"is a translated lattice.

THEOREM

Every bounded maximal
S-free set is a polytope.

Every unbounded maximal .
S-free convex set is a
cylinder above a polytope

P+ L where Lis a
lattice-subspace.
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Computing with Cut Generating Functions

MAIN GOAL: Closed form formulas for these minimal pairs.
Focuson S = (b+7Z") N Q where b ¢ Z", Q rational polyhedron.

Let B € R” be a maximal S-free convex set with 0 € int(B).

THEOREM: Maximal S-free convex sets are polyhedra. Thus,
B={xeR":a;-x<1,i€el}.

Define the function
¢s.B(r) = max a - f, Vr e R"

THEOREM: 45 = s = ¢s g is a valid pair. Moreover, (¢s,7s) is
“partially” minimal, i.e.,

(Vs,ms) < (s, ms) = b5 =1s
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Computing with Cut Generating Functions

B={xeR":a;-x<1,iel}.
Define the function

¢s.B(r) = max aj - r, Vr e R"
1€

Properties of ¢s g(r)

1. Subadditivity: ¢5,B(r1 aF r2) < CbS,B(rl) I ¢57B(r2) for all
rn,mnc R"

2. Positive Homogeneity: ¢s g(Ar) = A¢s g(r) for all
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3. Validity: B={r e R": ¢sp(r) <1} and
int(B) = {reR": ¢sp(r) <1}
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B={xeR":a;-x<1,iel}.
Define the function
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1€
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(s, 7s) is a partially minimal valid pair

Yps(r) =ms(r) = ¢s,8(r) = max aj - 1

Need to show:
(s,y) € Xs(R,P) := {(s,y) € RX x Z : Rs + Py € S} implies

k 0
Z¢S(fi)$i + Zws(pf)yj >1
i=1 j=1

is valid for any k, ¢/, R, P
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(s, 7s) is a partially minimal valid pair

YPs(r) =ms(r) = ¢s,8(r) = max a; - r

Need to show:

(Vs,7s) < (Ys,ms) = s =1s

Can assume (by applying Zorn's lemma) that (¢, 7%5) is a minimal
valid pair. This implies that 15 is subadditive and positively
homogeneous, and therefore, convex.



(s, 7s) is a partially minimal valid pair

Ys(r) =ms(r) = ¢sp(r) = rFIEaIx aj-r

(Vs,7s) < (Ys,ms) = s =1s

Can assume (by applying Zorn's lemma) that (¢, 7%5) is a minimal

valid pair. This implies that 1% is subadditive and positively
homogeneous, and therefore, convex.
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(s, 7s) is a partially minimal valid pair

Ys(r) = ms(r) = ds,p(r) = max a; - r
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(s, 7s) is a partially minimal valid pair

Ys(r) = ms(r) = ds,p(r) = max a; - r
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(s, 7s) is a partially minimal valid pair

Ys(r) = ms(r) = ds,p(r) = max a; - r
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(s, 7s) is a partially minimal valid pair

Yps(r) =ms(r) = ¢s,8(r) = max a; - r

Need to show:

Vs, 7s) < (vs,ms) = s =1s

1. B={reR": ¢j(r) < 1}.
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(s, 7s) is a partially minimal valid pair

Ys(r) =7s(r) = ¢sB(r) = max a - r
Need to show:

(Vs,ms) < (Vs,ms) = s =1s

1. B={reR":¢s(r) <1}.
2. D* =B where D:={d e R":r-d < 9(r) Yr e R"}



(s, 7s) is a partially minimal valid pair

Ys(r) =ms(r) = ¢s.8(r) = max 3 - r

Need to show:

(Vs,ms) < (Ys,ms) = Ps=1s

1. B={reR":¢(r) <1}.
2. D* =B where D:={d e R":r-d <¢%(r) Vr e R"}

3. THEOREM D* = B implies a’ € D for each i € /.
Basu, Cornuéjols, Zambelli 2011
Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick 2015



(s, 7s) is a partially minimal valid pair

Ys(r) =ms(r) = ¢s.8(r) = max a; - r

Need to show:

(Vs,ms) < (Ys,ms) = s =1s

B={reR":4c(r) <1}.

. D*=Bwhere D:={d eR":r-d <¢5(r) Vr e R"}
. THEOREM D* = B implies a' € D for each i € /.
r-a <(r) forevery i € I,r € R".
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(s, 7s) is a partially minimal valid pair

Ys(r) =ms(r) = ¢sB(r) = max aj - r

Need to show:

(Vs,75) < (s, 7s) = s =1s

B ={reR":4g(r) <1}

. D*=Bwhere D:={d eR":r-d <y(r) Vr e R"}
. THEOREM D* = B implies a' € D for each i € /.
r-a <(r) for every i € I,r € R".

O N

Ps(r) = nl)glx alr< Ps(r).



Computing with Cut Generating Functions
Xs(R,P) :={(s,y) € RX x Z : Rs + Py € S}

Focuson S = (b+Z")N Q where b ¢ 7", Q rational polyhedron.
Let B € R” be a maximal S-free convex set with 0 € int(B):
B={xeR":a;-x<1,iel}.
Define the function
¢s.8(r) = max aj - r, VreR".
THEOREM: 45 = ms = ¢s g is a partially minimal valid pair, i.e.,

(Vs,ms) < (vs,ms) = s =1s



Towards a fully minimal pair

Xs(R,P) :={(s,y) eRX xZ. : Rs + Py € S}

Focuson S = (b+Z")N Q where b ¢ 7", Q rational polyhedron.

Let B € R" be a maximal S-free convex set with 0 € int(B):
B={xeR":a;-x<1,iel}

Define the function

¢s.B(r) = max a; - f, Vr e R".
1€

Ys = ¢s,B, 7s(r) = minyews ¢s,8(r + w)
is a valid pair, where Ws = Z" N (lin(conv(S)))



Computing with Cut Generating Functions
Let B € R” be a maximal S-free convex set with 0 € int(B):

B={xeR":a;-x<1,iel}.
Define the function

¢s.B(r) = max a; - f, Vr e R"
1€

Vs =¢sp,  7s(r) = minyews ¢s(r + w)
is a valid pair, where Ws = Z" N (lin(conv(S)))

n=15=>b+Z where b ¢ Z.




Computing with Cut Generating Functions
Let B € R” be a maximal S-free convex set with 0 € int(B):

B={xeR":a;-x<1,iel}.
Define the function

¢s.B(r) = max a; - f, Vr e R"
1€

Vs =¢sp,  7s(r) = minyews ¢s(r + w)
is a valid pair, where Ws = Z" N (lin(conv(S)))

n=15=>b+Z where b ¢ Z.




Computing with Cut Generating Functions
Let B € R” be a maximal S-free convex set with 0 € int(B):

B={xeR":a;-x<1,iel}.
Define the function

¢s.B(r) = max a; - f, Vr e R"
1€

Vs =¢sp,  7s(r) = minyews ¢s(r + w)
is a valid pair, where Ws = Z" N (lin(conv(S)))

n=15=>b+Z where b ¢ Z.

-1 -1 0 1 2



Computing with Cut Generating Functions
Let B € R” be a maximal S-free convex set with 0 € int(B):

B={xeR":a;-x<1,iel}.
Define the function

¢s.B(r) = max a; - f, Vr e R"
1€
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Computing with Cut Generating Functions
Let B € R” be a maximal S-free convex set with 0 € int(B):

B={xeR":a;-x<1,iel}.
Define the function
¢s.B(r) = max a; - f, Vr e R"
1€
VYs=¢sp,  7s(r) =minwews ¢s8(r+w)
is a valid pair, where Ws = Z" N (lin(conv(S)))

n=15=>b+Z where b ¢ Z.

This is the " !
Gomory
Mixed-
Integer
(GMI) Cut!

—1 =1 0 g 1 2



Computing with Cut Generating Functions

Let B € R” be a maximal S-free convex set with 0 € int(B):

B={xeR":a;-x<1,iel}.
Define the function

¢s.8(r) = max aj - r, Vr e R".

Vs =¢sp,  ms(r) =minyews ¢s g(r+ w)
is a valid pair, where Ws = Z" N (lin(conv(S)))

QUESTION: When is this really minimal?
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The Lifting Region

1. Given
S=(b+Z"NAQ, B.

2. For every facet F,
Pr:={reR":

arg max; a;jr indexes F}.

a1

Pr\ Pr

PFz

Fy
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The Lifting Region

1. Given
S=(b+Z")NQ, B.
2. For every facet F,

Pr:={reR": _ 7 =
. B\ S\ F
arg max; a;r indexes F}. AN N
3. For each
So.Fy
z € 5N F, construct
Fz ZZ

527[: = PFﬂ(Z*PF).
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The Lifting Region

1. Given
S=(b+Z"NQ, B.
2. For every facet F,
Pr:={reR":

arg max; a;jr indexes F}.
3. For each

z € SN F, construct
Sz,F = PFﬁ(Z—PF).

R(S.B)= |J | Sur

Facets F zeSNF



The Lifting Region and the Covering Property

RGS,B)= |J | SuF

Facets F zeSNF

THEOREM Basu, Campelo, Conforti, Cornuéjols, Zambelli 2011
1hs(r) = maxie ajr and ws(r) = minyews ¥s(r + w) form a
minimal pair if (and only if) R(S, B) + Ws = R".



The Lifting Region and the Covering Property

RS,B)= |J U S.r

Facets F zeSNF

THEOREM Basu, Campelo, Conforti, Cornuéjols, Zambelli 2011
Ys(r) = maxjes ajr and ws(r) = minyew, ¥s(r + w) form a
minimal pair if (and only if) R(S, B) + Ws = R".

Main Credit for sparking this line of research:
Santanu Dey and Laurence Wolsey 2009.
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R(S,B) + Ws = R"




e
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R(S,B) + Ws #R"




We want maximal S-free sets B such that R(S, B) + Ws = R".
This gives us closed form formulas for cut generating pairs.

Connects with a lot of research on coverings and tilings by
star-shaped bodies, extensively studied in Geometry of Numbers.



Operations that preserve the covering property

THEOREM Basu, Paat 2014

Let B be a maximal S-free polytope in R"(n > 2) let t € R” such
that B + t still contains the origin. Then R(S,B) + Ws = R" if
andonly if R(S +t,B+t)+ Ws; =R"
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Operations that preserve the covering property

Coproduct Construction. Let By CR™ and B, C R™. Let

0; € int(B;), i =1,2. For any 0 < p < 1, define the coproduct as
a polytope in RM+m:

By

By ¢ By := conv(({ 1
—

% {02}) U ({01} x ’fj)).

THEOREM Averkov, Basu (MPB 2014)

Let B; C R" be maximal S;-free polytopes and let 0 < p < 1.
Then By ¢ B, C R™ ™ js a maximal S; x Sy-free polytope.
Moreover, if Bi, Bo both have the covering property, then so does
Bl < BQ.

Extended to general unbounded Bi, By by Basu, Paat 2014
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Operations that preserve the covering property

THEOREM Basu, Paat 2014

Let B; be a sequence of maximal S-free polytopes that “converge”
to a maximal S-free polytope B. If every polytope in the sequence
has the covering property, then the “limit" polytope B has the
covering property.



Covering Property of Pyramids

THEOREM Averkov, Basu (IPCO 2014)

Let P be a maximal S-free pyramid in R” such that every facet of
P contains exactly one integer point in its relative interior. P has
the covering property if and only if P is an affine unimodular
transformation of conv{0, nel,... ne"}.
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Covering Property of Pyramids

THEOREM Averkov, Basu (IPCO 2014)

Let P be a maximal S-free pyramid in R” such that every facet of
P contains exactly one integer point in its relative interior. P has
the covering property if and only if P is an affine unimodular
transformation of conv{0, nel, ..., ne"}.

PROOF:

1. Let O be the apex of P and consider S, r, where F is the base.
2. Venkov-Alexandrov-McMullen theorem = S, r is centrally
symmetric with centrally symmetric facets. S, r spindle = every
belt is of length 4 = n — 2 face is centrally symmetric.

3. McMullen's characterization of zonotopes = S, r is a zonotope
whose every belt is of length 4.

4. Combinatorial geometry of zonotopes = S, ¢ is a parallelotope.
This implies P is a simplex.

5. Minkowski-Hajés theorem = P is an affine unimodular
transformation of conv{0, nel,..., ne"}.



k J4
Xs(R,P):={(s,y) € Rf x 28 : Y " ris+ > ply; € S}
i=1 j=1

Want minimal valid pair (15, 7s) such that we have efficiently
computable formulas.

Approach: Start with maximal S-free set
B={x€eR":a;-x <1, i€ l} with the covering property.

Ys(r) = max;csaj - r, 7s(r) = minyews Ys(r + w)

where Ws = Z" N (lin(conv(S))).



k )4
Xs(R,P):={(s,y) RE x 28 : 3" risi+ > ply; € S}
i—1 j=1

Want minimal valid pair (15, 7s) such that we have efficiently
computable formulas.

Approach: Start with maximal S-free set
B={xe€R":a;-x<1, i€ l} with the covering property.

Ys(r) = maxies a; - r, ms(r) = mingews ¥s(r + w)

where Ws = Z" N (lin(conv(S))).

Another approach: First find “minimal valid” 7 and then try to find
functions 1) that can be appended to 7 to create a valid pair.
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Balas 1971: Intersection Cuts
Balas, Jeroslow 1980: Monoidal Strengthening

Approach: Start v
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Vs(r) = maxigjai-r,  ws(r) = minwews Ys(r+ w)
where Ws = Z" N (lin(conv(S))).

Another approach: First find “minimal valid” 7 and then try to
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Approach: Start v
B={xeR":a

Vs(r) = maxigjai-r,  ws(r) = minwews Ys(r+ w)
where Ws = Z" N (lin(conv(S))).

Another approach- Civet finAd “mainimal vnlid" o AanAd +han +00 +4
find functions v t Gomory, Johnson 1971-74: Group Relaxations



THANK YOU !

Questions/Comments ?



