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Maximal S-free Convex Sets

S = b + Zn is a translated lattice.

THEOREM

Every bounded maximal
S-free set is a polytope.

Every unbounded maximal
S-free convex set is a
cylinder above a polytope
P + L where L is a
lattice-subspace.
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⇒ φS,B(
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i=1 r
i si +
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[Validity of φS ,B ]

⇒ ∑k
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⇒ ∑k
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⇒ ∑k
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(ψS , πS) is a partially minimal valid pair

ψS(r) = πS(r) = φS ,B(r) = max
i∈I

ai · r

Need to show:

(ψ′S , π
′
S) ≤ (ψS , πS) ⇒ ψ′S = ψS

1. B = {r ∈ Rn : ψ′S(r) ≤ 1}.
2. D∗ = B where D := {d ∈ Rn : r · d ≤ ψ′S(r) ∀r ∈ Rn}
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′
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2. D∗ = B where D := {d ∈ Rn : r · d ≤ ψ′S(r) ∀r ∈ Rn}
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4. r · ai ≤ ψ′S(r) for every i ∈ I , r ∈ Rn.

ψS(r) = max
i∈I

ai · r ≤ ψ′S(r).



Computing with Cut Generating Functions

XS(R,P) := {(s, y) ∈ Rk
+ × Z`

+ : Rs + Py ∈ S}

Focus on S = (b + Zn) ∩Q where b 6∈ Zn, Q rational polyhedron.

Let B ∈ Rn be a maximal S-free convex set with 0 ∈ int(B):

B = {x ∈ Rn : ai · x ≤ 1, i ∈ I}.

Define the function

φS ,B(r) = max
i∈I

ai · r , ∀r ∈ Rn.

THEOREM: ψS = πS = φS ,B is a partially minimal valid pair, i.e.,

(ψ′S , π
′
S) ≤ (ψS , πS) ⇒ ψ′S = ψS



Towards a fully minimal pair

XS(R,P) := {(s, y) ∈ Rk
+ × Z`

+ : Rs + Py ∈ S}

Focus on S = (b + Zn) ∩Q where b 6∈ Zn, Q rational polyhedron.

Let B ∈ Rn be a maximal S-free convex set with 0 ∈ int(B):

B = {x ∈ Rn : ai · x ≤ 1, i ∈ I}.

Define the function

φS ,B(r) = max
i∈I

ai · r , ∀r ∈ Rn.

ψS = φS ,B , πS(r) = minw∈WS
φS ,B(r + w)

is a valid pair, where WS = Zn ∩ (lin(conv(S)))



Computing with Cut Generating Functions
Let B ∈ Rn be a maximal S-free convex set with 0 ∈ int(B):

B = {x ∈ Rn : ai · x ≤ 1, i ∈ I}.

Define the function

φS ,B(r) = max
i∈I

ai · r , ∀r ∈ Rn.

ψS = φS ,B , πS(r) = minw∈WS
φS ,B(r + w)

is a valid pair, where WS = Zn ∩ (lin(conv(S)))

n = 1,S = b + Z where b 6∈ Z.

1

0 [b]

ψ

[b]− 1

0B [b]



Computing with Cut Generating Functions
Let B ∈ Rn be a maximal S-free convex set with 0 ∈ int(B):

B = {x ∈ Rn : ai · x ≤ 1, i ∈ I}.

Define the function

φS ,B(r) = max
i∈I

ai · r , ∀r ∈ Rn.

ψS = φS ,B , πS(r) = minw∈WS
φS ,B(r + w)

is a valid pair, where WS = Zn ∩ (lin(conv(S)))

n = 1,S = b + Z where b 6∈ Z.

1

0 [b]

ψ

[b]− 1 1 2−1

0B [b]



Computing with Cut Generating Functions
Let B ∈ Rn be a maximal S-free convex set with 0 ∈ int(B):

B = {x ∈ Rn : ai · x ≤ 1, i ∈ I}.

Define the function

φS ,B(r) = max
i∈I

ai · r , ∀r ∈ Rn.

ψS = φS ,B , πS(r) = minw∈WS
φS ,B(r + w)

is a valid pair, where WS = Zn ∩ (lin(conv(S)))

n = 1,S = b + Z where b 6∈ Z.

1

0 [b]

ψ

π

[b]− 1 1 2−1

0B [b]



Computing with Cut Generating Functions
Let B ∈ Rn be a maximal S-free convex set with 0 ∈ int(B):

B = {x ∈ Rn : ai · x ≤ 1, i ∈ I}.

Define the function

φS ,B(r) = max
i∈I

ai · r , ∀r ∈ Rn.

ψS = φS ,B , πS(r) = minw∈WS
φS ,B(r + w)

is a valid pair, where WS = Zn ∩ (lin(conv(S)))

n = 1,S = b + Z where b 6∈ Z.

1

0 [b]

ψ

π

[b]− 1 1 2−1

0B [b]



Computing with Cut Generating Functions
Let B ∈ Rn be a maximal S-free convex set with 0 ∈ int(B):

B = {x ∈ Rn : ai · x ≤ 1, i ∈ I}.

Define the function

φS ,B(r) = max
i∈I

ai · r , ∀r ∈ Rn.

ψS = φS ,B , πS(r) = minw∈WS
φS ,B(r + w)

is a valid pair, where WS = Zn ∩ (lin(conv(S)))

n = 1,S = b + Z where b 6∈ Z.

This is the
Gomory
Mixed-
Integer
(GMI) Cut!
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Computing with Cut Generating Functions

Let B ∈ Rn be a maximal S-free convex set with 0 ∈ int(B):

B = {x ∈ Rn : ai · x ≤ 1, i ∈ I}.

Define the function

φS ,B(r) = max
i∈I

ai · r , ∀r ∈ Rn.

ψS = φS ,B , πS(r) = minw∈WS
φS ,B(r + w)

is a valid pair, where WS = Zn ∩ (lin(conv(S)))

QUESTION: When is this really minimal?
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2. For every facet F ,
PF := {r ∈ Rn :
arg maxi ai r indexes F}.
3. For each
z ∈ S ∩ F , construct
Sz,F := PF∩(z−PF ).

0
F1

F2

F3Sz1,F1

Sz2,F2

Sz3,F3

z1

z2

z3



The Lifting Region

1. Given
S = (b+Zn)∩Q, B.
2. For every facet F ,
PF := {r ∈ Rn :
arg maxi ai r indexes F}.
3. For each
z ∈ S ∩ F , construct
Sz,F := PF∩(z−PF ).

0
F1

F2

F3Sz1,F1

Sz2,F2

Sz3,F3

z1

z2

z3

R(S ,B) =
⋃

Facets F

⋃
z∈S∩F

Sz,F



The Lifting Region

1. Given
S = (b+Zn)∩Q, B.
2. For every facet F ,
PF := {r ∈ Rn :
arg maxi ai r indexes F}.
3. For each
z ∈ S ∩ F , construct
Sz,F := PF∩(z−PF ).

z1

z2
z3

Sz1,F1

Sz2,F2
Sz3,F3

0

F3

F1

F2

R(S ,B) =
⋃

Facets F

⋃
z∈S∩F

Sz,F



The Lifting Region

1. Given
S = (b+Zn)∩Q, B.
2. For every facet F ,
PF := {r ∈ Rn :
arg maxi ai r indexes F}.
3. For each
z ∈ S ∩ F , construct
Sz,F := PF∩(z−PF ).
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The Lifting Region and the Covering Property

R(S ,B) =
⋃

Facets F

⋃
z∈S∩F

Sz,F

THEOREM Basu, Campelo, Conforti, Cornuéjols, Zambelli 2011

ψS(r) = maxi∈I ai r and πS(r) = minw∈WS
ψS(r + w) form a

minimal pair if (and only if) R(S ,B) + WS = Rn.



The Lifting Region and the Covering Property

R(S ,B) =
⋃

Facets F

⋃
z∈S∩F

Sz,F

THEOREM Basu, Campelo, Conforti, Cornuéjols, Zambelli 2011

ψS(r) = maxi∈I ai r and πS(r) = minw∈WS
ψS(r + w) form a

minimal pair if (and only if) R(S ,B) + WS = Rn.

Main Credit for sparking this line of research:
Santanu Dey and Laurence Wolsey 2009.
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R(S ,B) +WS = Rn
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MORAL :
We want maximal S-free sets B such that R(S ,B) + WS = Rn.
This gives us closed form formulas for cut generating pairs.

Connects with a lot of research on coverings and tilings by
star-shaped bodies, extensively studied in Geometry of Numbers.



Operations that preserve the covering property

THEOREM Basu, Paat 2014

Let B be a maximal S-free polytope in Rn(n ≥ 2) let t ∈ Rn such
that B + t still contains the origin. Then R(S ,B) + WS = Rn if
and only if R(S + t,B + t) + WS+t = Rn
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Operations that preserve the covering property

Coproduct Construction. Let B1 ⊆ Rn1 and B2 ⊆ Rn2 . Let
0i ∈ int(Bi ), i = 1, 2. For any 0 < µ < 1, define the coproduct as
a polytope in Rn1+n2 :

B1 � B2 := conv(({ B1

1− µ × {02}) ∪ ({01} ×
B2

µ
)).

THEOREM Averkov, Basu (MPB 2014)

Let Bi ⊆ Rni be maximal Si -free polytopes and let 0 < µ < 1.
Then B1 � B2 ⊆ Rn1+n2 is a maximal S1 × S2-free polytope.
Moreover, if B1,B2 both have the covering property, then so does
B1 � B2.

Extended to general unbounded B1,B2 by Basu, Paat 2014
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Extended to general unbounded B1,B2 by Basu, Paat 2014



Operations that preserve the covering property

THEOREM Basu, Paat 2014

Let Bt be a sequence of maximal S-free polytopes that “converge”
to a maximal S-free polytope B. If every polytope in the sequence
has the covering property, then the “limit” polytope B has the
covering property.



Covering Property of Pyramids

THEOREM Averkov, Basu (IPCO 2014)

Let P be a maximal S-free pyramid in Rn such that every facet of
P contains exactly one integer point in its relative interior. P has
the covering property if and only if P is an affine unimodular
transformation of conv{0, ne1, . . . , nen}.
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Covering Property of Pyramids

THEOREM Averkov, Basu (IPCO 2014)

Let P be a maximal S-free pyramid in Rn such that every facet of
P contains exactly one integer point in its relative interior. P has
the covering property if and only if P is an affine unimodular
transformation of conv{0, ne1, . . . , nen}.
PROOF:
1. Let 0 be the apex of P and consider Sz,F , where F is the base.
2. Venkov-Alexandrov-McMullen theorem ⇒ Sz,F is centrally
symmetric with centrally symmetric facets. Sz,F spindle ⇒ every
belt is of length 4 ⇒ n − 2 face is centrally symmetric.
3. McMullen’s characterization of zonotopes ⇒ Sz,F is a zonotope
whose every belt is of length 4.
4. Combinatorial geometry of zonotopes ⇒ Sz,F is a parallelotope.
This implies P is a simplex.
5. Minkowski-Hajós theorem ⇒ P is an affine unimodular
transformation of conv{0, ne1, . . . , nen}.



XS(R,P) := {(s, y) ∈ Rk
+ × Z`

+ :
k∑

i=1

r i si +
∑̀
j=1

pjyj ∈ S}

Want minimal valid pair (ψS , πS) such that we have efficiently
computable formulas.

Approach: Start with maximal S-free set
B = {x ∈ Rn : ai · x ≤ 1, i ∈ I} with the covering property.

ψS(r) = maxi∈I ai · r , πS(r) = minw∈WS
ψS(r + w)

where WS = Zn ∩ (lin(conv(S))).
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Another approach: First find “minimal valid” π and then try to find
functions ψ that can be appended to π to create a valid pair.
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where WS = Zn ∩ (lin(conv(S))).

Another approach: First find “minimal valid” π and then try to
find functions ψ that can be appended to π to create a valid pair.

Balas 1971: Intersection Cuts
Balas, Jeroslow 1980: Monoidal Strengthening

Gomory, Johnson 1971-74: Group Relaxations



THANK YOU !

Questions/Comments ?


