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The hybrid workshop on applied functional analysis attracted 51 participants, 7 of which

participated in-person at the Banff International Research Station. A total of 28 talks ( in-

cluding 26 forty-five minute talks, and 2 twenty-five minute ralks) were presented by a wide

variety of speakers, ranging from graduate students, postdocs, early career academics, to senior

academics. The presentations covered a wide range of topics covering foundational aspects of

sampling discretization, applied harmonic analysis, sparse approximation theory, numerical and

functional analysis.

1. Overview of the Field and Recent Developments

Many multi-parameter real-world problems are modeled on spaces of multivariate functions

in n variables, where n may be very large. Since these problems can almost never be solved

analytically, one is interested in suitable model assumptions and good approximate solutions

within a reasonable computing time. The multivariate approximation theory in the classical

setting has close connections with other areas of mathematics and has many applications in

numerical computations. However,classical methods do not work for really high dimensions.

High-dimensional approximation is a hot rapidly developing area of mathematics and numerical

analysis where researchers try to understand which new approaches may work. A promising

contemporary approach is based on the concept of sparsity and nonlinear m-term approxima-

tion. The last decade has seen great successes in studying nonlinear approximation which was

motivated by numerous applications. The fundamental question of nonlinear approximation

is how to devise good constructive methods (algorithms) of nonlinear approximation. This

problem has two levels of nonlinearity. The first level of nonlinearity is m-term approximation

(sparse approximation) with regard to bases. In this problem one can use the unique func-

tion expansion with regard to a given basis to build an approximant. Nonlinearity enters by
1
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looking for m-term approximants with terms (i.e. basis elements in approximant) allowed to

depend on a given function. Since the elements of the basis used in the m-term approximation

are allowed to depend on the function being approximated, this type of approximation is very

efficient. On the second level of nonlinearity, we replace a basis by a more general system

which is not necessarily minimal (for example, redundant system, dictionary). This setting is

much more complicated than the first one (bases case), however, there is a solid justification

of importance of redundant systems in both theoretical questions and in practical applications.

Recent results have established that greedy type algorithms are suitable methods of nonlinear

approximation in both m-term approximation with regard to bases and m-term approximation

with regard to redundant systems. It turns out that there is one fundamental principal that

allows us to build good algorithms both for arbitrary redundant systems and for very simple

well structured bases like the Haar basis. This principal is the use of a greedy step in searching

for a new element to be added to a given m-term approximant. By a greedy step, we mean

one which maximizes a certain functional determined by information from the previous steps of

the algorithm. We obtain different types of greedy algorithms by varying the above mentioned

functional and also by using different ways of constructing (choosing coefficients of the linear

combination) the m-term approximant from the already found m elements of the dictionary.

We payed a special attention to this new promising area of research and invited several experts

on greedy approximation to speak at the workshop.

It was understood in the beginning of the 20th century that smoothness properties of a uni-

variate function determine the rate of approximation of this function by polynomials (trigono-

metric in the periodic case and algebraic in the non-periodic case). A fundamental question

is: What is a natural multivariate analog of univariate smoothness classes? Different function

classes were considered in the multivariate case: isotropic and unisiotropic Sobolev and Besov

classes, classes of functions with bounded mixed derivative and others. The next fundamental

question is: How to approximate functions from these classes? Kolmogorov introduced the

concept of the n-width of a function class. This concept is very useful in answering the above

question. The Kolmogorov n-width is a solution to an optimization problem where we optimize

over n-dimensional linear subspaces. This concept allows us to understand which n-dimensional

linear subspace is the best for approximating a given class of functions. The rates of decay of

the Kolmogorov n-width are known for the univariate smoothness classes. In some cases even

exact values of it are known. The problem of the rates of decay of the Kolmogorov n-width for
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the classes of multivariate functions with bounded mixed derivative is still an open problem.

We note that the function classes with bounded mixed derivative are not only interesting and

challenging object for approximation theory but they are important in numerical computations.

This topic was discussed in detail at the workshop.

Numerical integration is one more challenging multivariate problem where approximation

theory methods are very useful. For a given function class F we want to findm points x1, . . . , xm

in D such that
∑m

j=1
1
m
f (xj) approximates well the integral

∫
D
fdµ, where µ is the normalized

Lebesgue measure on D. Classical geometric discrepancy theory is concerned with different

versions of the following questions: What is the most uniform way to distribute finitely many

points in various geometric settings (in particular, in high dimensions)? In other words, how

well can one approximate continuous objects by discrete ones? And how large are the errors

that inevitably arise in such approximations? Quite naturally this topic is directly related

to approximation theory, more specifically - numerical integration: well-distributed point sets

provide good cubature formulas and different notions of discrepancy yield integration error

estimates for various function classes. This immediately brings up the connection between

discrepancy and functional analysis and the function space theory. Classical discrepancy theory

provides constructions of point sets that are good for numerical integration of characteristic

functions of parallelepipeds of the form P =
∏d

j=1 [aj, bj]. The typical error bound is of the

form m−1(logm)d−1. Note that a regular grid for m = nd provides an error of the order

m−1/d. The above mentioned results of discrepancy theory are closely related to numerical

integration of functions with bounded mixed derivative (the case of the first mixed derivative).

Sparse grids play an important role in numerical integration of functions with bounded mixed

derivative. In the case of r th bounded mixed derivative they provide an error of the order

m−r(logm)(d−1)(r+1). Also, they provide the recovery error in the sampling problem of the

same order. Note again that the regular grid from above provides an error of the order m−r/d.

The error bound m−r(logm)(d−1)(r+1) is reasonably good for moderate dimensions d, say, d ≤

40. It turns out that there are practical computational problems with moderate dimensions

where sparse grids work well. Sparse grids techniques have applications in quantum mechanics,

numerical solutions of stochastic PDEs, data mining, finance. This topic, including numerical

integration on the sphere was also discussed in detail at the workshop.
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2. Presentation highlights

Many of the recent developments highlighted in the last section were presented at the work-

shop. Details are given below.

1. Alexander Litvak: The minimal dispersion in the unit cube.

We improve known upper bounds for the minimal dispersion of a point set in the unit cube. Our bounds are sharp up to

logarithmic factors. The talk is partially based on a joint work with G. Livshyts.

2. D. Leviatan: Coconvex approximation of periodic functions.
Let C̃ be the space of continuous 2π-periodic functions f , endowed with the uniform norm ∥f∥ := maxx∈R |f(x)|, and

denote by ωk(f, t), the k-th modulus of smoothness of f . Denote by C̃r, the subspace of r times continuously differentiable

functions f ∈ C̃, and let Tn, be the set of trigonometric polynomials Tn of degree ≤ n (that is, of order ≤ 2n + 1). Given a

set Ys := {yi}2si=1,of 2s points, s ≥ 1, such that −π ≤ y1 < y2 < · · · < y2s < π, and a function f ∈ C̃r, r ≥ 3, that changes

convexity exactly at the points Ys, namely, the points Ys are all the inflection points of f . We wish to approximate f by

trigonometric polynomials which are coconvex with it, that is, satisfy

f ′′(x)T ′′
n (x) ≥ 0, x ∈ R.

We prove, in particular, that if r ≥ 3, then for every k, s ≥ 1, there exists a sequence {Tn}∞n=N , N = N(r, k, Ys), of trigonometric

polynomials Tn ∈ Tn, coconvex with f , such that

∥f − Tn∥ ≤
c(r, k, s)

nr
ωk(f

(r), 1/n).

It is known that one may not take N independent of Ys.

3. Speaker: Bin Han: Generalized Hermite subdivision schemes and spline wavelets on intervals

Hermite and Birkhoff interpolation is a classical topic in approximation theory and is useful in CAGD and numerical

PDEs, due to their connections to spline theory and wavelets. In this talk, we shall introduce the notation of generalized

Hermite subdivision schemes, characterize their convergence and smoothness, and then discuss their connections with spline

multiwavelets having the interpolation properties. We provide some examples of generalized Hermite subdivision schemes having

the Hermite/Birkhoff interpolation and spline properties. As an application, we first construct spline multiwavelets on the real

line from some generalized Hermite subdivision schemes, adapt them to the unit interval through a recent general method

for adapting any wavelets to bounded intervals, and then illustrate their application to the cavity problem of the Helmholtz

equation. Some are joint work with M. Michelle.

4. Yuri Malykhin: Widths and rigidity.

We will consider Kolmogorov widths of finite systems of functions. It is known that any orthonormal system {f1, . . . , fN}

is rigid in L2, i.e. it can’t be approximated by linear spaces of dimension essentially smaller than N . This is not always true

in weaker metrics, e.g. the first N Walsh functions can be o(1)-approximated by linear spaces of dimension o(N) in Lp, p < 2.

We will give some sufficient conditions for rigidity in that norms. Also we will discuss the connections between widths and the

notion of matrix rigidity and give some related positive results on approximation of Fourier and Walsh systems.
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5. Ben Adcock: Is Monte Carlo a bad sampling strategy for learning smooth functions in high

dimensions?
This talk concerns the approximation of smooth, high-dimensional functions on bounded hypercubes from limited samples

using polynomials. This task lies at the heart of many applications in computational science and engineering – notably, those

arising from parametric modelling and computational uncertainty quantification. It is common to use Monte Carlo sampling

in such applications, so as not to succumb to the curse of dimensionality. However, it is well known that such a strategy is

theoretically suboptimal. Specifically, there are many polynomial spaces of dimension n for which the sample complexity scales

log-quadratically, i.e., like c · n2 · log(n) as n → ∞. This well-documented phenomenon has led to a concerted effort over the

last decade to design improved, in fact, near-optimal strategies, whose sample complexities scale log-linearly, or even linearly

in n.

Paradoxically, in this talk we demonstrate that Monte Carlo is actually a perfectly good strategy in high dimensions,

despite this apparent suboptimality. We first document this phenomenon empirically via several numerical examples. Next, we

present a theoretical analysis that resolves this seeming contradiction for the class of (b, ε)-holomorphic functions of infinitely-

many variables. We show that there is a least-squares approximation based on m Monte Carlo samples whose error decays

algebraically fast in m/ log(m), with a rate that is the same as that of the best n-term polynomial approximation. This result

is non-constructive, since it assumes knowledge of a suitable polynomial subspace (depending on b) in which to compute the

approximation. Hence, we then present a constructive scheme based on compressed sensing that achieves the same rate, subject

to a slightly stronger assumption on b and a larger polylogarithmic factor. This scheme is practical, and numerically performs

as well as or better than well-known adaptive least-squares schemes.

Finally, while most of our results concern polynomials, we also demonstrate that the same results can be achieved via deep

neural networks with standard training procedures. Overall, our findings demonstrate that Monte Carlo sampling is eminently

suitable for smooth function approximation tasks on bounded domains when the dimension is sufficiently high. Hence, the

benefits of state-of-the-art improved sampling strategies seem to be generically limited to lower-dimensional settings.

This is joint work with Simone Brugiapaglia, Juan M. Cardenas, Nick Dexter and Sebastian Moraga.

References

B. Adcock & S. Brugiapaglia. Is Monte Carlo a bad sampling strategy for learning smooth functions in high dimensions?

Preprint (2022).

B. Adcock, S. Brugiapaglia, N. Dexter & S. Moraga. On efficient algorithms for computing near-best polynomial approximations

to high-dimensional, Hilbert-valued functions from limited samples. arXiv:2203.13908 (2022).

B. Adcock, S. Brugiapaglia, & C. G. Webster, Sparse Polynomial Approximation of High-Dimensional Functions, SIAM,

Philadelphia, PA (2022).

B. Adcock & J. M. Cardenas, Near-optimal sampling strategies for multivariate function approximation on general domains,

SIAM J. Math. Data Sci., 2(3):607–630 (2020).

6. Martin Buhmann ( Janin Jäger): Strict Positive Definiteness of Convolutional and Axially

Symmetric Kernels.
We study new sufficient conditions of strict positive definiteness for generalisations of radial basis and other kernels on

multi-dimensional spheres which are no longer radially symmetric but possess specific coefficient structures. The results use

the series expansion of the kernel in spherical harmonics. The kernels either have a convolutional form or are axially symmetric

with respect to one axis.
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7. Mario Ullrich ( Matthieu Dolbeault, David Krieg): On optimal L2-approximation with func-

tion values.
Let F ⊂ L2 be a class of complex-valued functions on a set D, such that, for all x ∈ D, point evaluation f 7→ f(x) is a

continuous linear functional. We study the L2-approximation of functions from F and want to compare the power of function

values with the power of arbitrary linear information. To be precise, the sampling number gn(F ) is the minimal worst-case

error (in F ) that can be achieved with n function values, whereas the approximation number (or Kolmogorov width) dn(F ) is

the minimal worst-case error that can be achieved with n pieces of arbitrary linear information (like derivative values or Fourier

coefficients).

Here, we report on recent developments in this problem and, in particular, explain how the individual contributions

from [1,2,3,4] lead to the following statement:

There is a universal constant c ∈ N such that the sampling numbers of the unit ball F of every separable reproducing kernel

Hilbert space are bounded by

gcn(F ) ≤

√√√√ 1

n

∑
k≥n

dk(F )2,

We also obtain similar upper bounds for more general classes F , and provide examples where our bounds are attained up to a

constant. For example, if we assume that dn(F ) ≍ n−α(logn)β for some α > 1/2 and β ∈ R, then we obtain

gn(F ) ≍ dn(F ),

showing that function values are (up to constants) as powerful as arbitrary linear information.

The results rely on the solution to the Kadison-Singer problem, which we extend to the subsampling of a sum of infinite

rank-one matrices.

Bibliography:

1 M. Dolbeault, D. Krieg and M. Ullrich, A sharp upper bound for sampling numbers in L2, preprint.

2 D. Krieg and M. Ullrich, Function values are enough for L2-approximation, Found. Comput. Math. 21 (2021), 1141–1151.

3 D. Krieg and M. Ullrich, Function values are enough for L2-approximation: Part II, J. Complexity 66 (2021).

4 N. Nagel, M. Schäfer and T. Ullrich, A new upper bound for sampling numbers, Found. Comput. Math. 21 (2021).

8. Janin Jäger (Martin Buhmann, Jean Carlo): Strict positive definiteness: From compact

Riemaniann manifolds to the sphere.
Isotropic positive definite functions are used in approximation theory and are for example applied in geostatistics and

physiology. They are also of importance in statistics where they occur as correlation functions of homogeneous random fields

on spheres. We study a class of functions applicable for interpolation of arbitrary scattered data on Md by linear combination

of shifts of an isotropic basis function φ, where Md is a compact Riemannian manifold.
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A class of functions for which the resulting interpolation problem is uniquely solvable for any distinct point set Ξ ⊂ Md

and arbitrary d is the class of strictly positive definite kernels SPD(Md). For kernels possessing a certain series expansion in

eigenfunctions of the Laplace-Beltrami operator on Md, we derive a characterisation of this class. First, for general compact

Riemannian manifolds, then for homogeneous manifolds and finally for two-point homogeneous manifolds and the sphere (see

[3]).

For the special case of Sd−1, the results extend the characterisation for radial kernels from [1]. For this case, we derive

conditions showing that non-radial kernels can be strictly positive definite while possessing significantly less positive coefficients,

in the given expansion, compared to radially symmetric kernels (see [2]).

References
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Definite Functions on Spheres. Proceedings of the AMS, 131(9), 2733–2740.
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kernels on d-dimensional spheres. Journal of Fourier Analysis and Applications, 28(3), 1-25.

9. Gideon Schechtman: The problem of dimension reduction of finite sets in normed spaces.

Given a normed space X, C > 1 and n ∈ N we denote by kCn (X) the smallest k such that every S ⊂ X with |S| = n admits

an embedding into a k-dimensional subspace of X which distort the mutual distances in S by at most a factor of C. We shall

survey the little that is known about estimating kCn (X) for different spaces X. The lattest is a result of Assaf Naor, Gilles Pisier

and myself: Let S1 denote the Schatten–von Neumann trace class, i.e., the Banach space of all compact operators T : ℓ2 → ℓ2

whose trace class norm ∥T∥S1
=

∑∞
j=1 σj(T ) is finite, where {σj(T )}∞j=1 are the singular values of T . We prove that for each

C > 1, kCn (S1) has a lower bound which is a positive power of n. This extends a result of Brikmann and Charikar (2003) who

proved a similar result with ℓ1 replacing S1. It stands in sharp contrast with the Johnson–Lindenstrauss lemma (1984) which

says that the situation in ℓ2 is very different.

10. A. Kroo: Weierstrass type approximation problem for multivariate homogeneous polynomi-

als.

By the celebrated Weierstarss approximation theorem continuous functions on compact sets admit uniform polynomial

approximation. The similar question of density of homogeneous multivariate polynomials has been actively investigated in the

past 10-15 years. In this talk we will give a survey of the main developments related to this problem.

11. Yuan Xu: Approximation and analysis in localized homogeneous space.

We consider approximation and localized frames on conic domains. Our approach is based on the orthogonal structure that

admits a closed-form formula for its reproducing kernels, akin to the addition formula of spherical harmonics. Such a formula

leads to highly localized kernels that serve as the foundation for analysis in such domains. The results will be presented in a

general framework encompassing well-studied domains such as the unit sphere and the unit ball.
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12. Akram Aldroubi: Dynamical sampling: Source term recovery.

Consider the IVP in a separable Hilbert space : where , , is the time derivative of , and is an initial condition. The goal is

to recover from the measurements , where is a countable subset of , is an unknown, but slowly varying background source, and

is an additive noise.

13. Boris Kashin: On some problems joint for function theory and theoretical computer science.

14. V. Temlyakov: Sampling discretization of the uniform norm.
Discretization of the uniform norm of functions from a given finite dimensional subspace of continuous functions will be

discussed. We will pay special attention to the case of trigonometric polynomials with frequencies from an arbitrary finite

set with fixed cardinality. We will discuss the fact that for any N -dimensional subspace of the space of continuous functions

it is sufficient to use eCN sample points for an accurate upper bound for the uniform norm. Previous known results show

that one cannot improve on the exponential growth of the number of sampling points for a good discretization theorem in the

uniform norm. Also, we will present a general result, which connects the upper bound on the number of sampling points in

the discretization theorem for the uniform norm with the best m-term bilinear approximation of the Dirichlet kernel associated

with the given subspace.

We illustrate the application of our technique on the example of trigonometric polynomials.

The talk is based on a joint work with B. Kashin and S. Konyagin.

15. A. Prymak: Optimal polynomial meshes exist on any multivariate convex domain.

We show that every convex body Ω in Rd possesses optimal polynomial meshes, which confirms a conjecture by A. Kroo.

Namely, there exists a sequence {Yn}n≥1 of finite subsets of Ω such that the cardinality of Yn is at most C1nd while for any

polynomial P of total degree ≤ n in d variables ∥P∥Ω ≤ C2∥P∥Yn , where ∥P∥X := sup{|P (x)| : x ∈ X} and C1, C2 are positive

constants depending only on Ω. This is a joint work with Feng Dai.

16. Ding-Xuan Zhou: Approximation Theory of Structured Deep Neural Networks.

Deep learning has been widely applied and brought breakthroughs in speech recognition, computer vision, natural language

processing, and many other domains. The involved deep neural network architectures and computational issues have been

well studied in machine learning. But there lacks a theoretical foundation for understanding the modelling, approximation or

generalization ability of deep learning models with network architectures. One family of structured neural networks is deep

convolutional neural networks (CNNs) with convolutional structures. The convolutional architecture gives essential differences

between deep CNNs and fully-connected neural networks, and the classical approximation theory for fully-connected networks

developed around 30 years ago does not apply. This talk describes an approximation theory of deep CNNs and related structured

deep neural networks.

17. Dmitriy Bilyk: Discrete minimizers of energy integrals.

It is quite natural to expect that minimization of pairwise interaction energies leads to uniform distributions, at least for

”nice” kernels. However, the opposite effect occurs in many interesting examples, especially for attractive-repulsive energies or

when the repulsion is very weak: minimizing measures are discrete (or at least are very non-uniform, e.g. supported on ”thin”
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or lower-dimensional sets). We shall discuss some results related to this curious phenomenon and its relation to analysis, signal

processing, discrete geometry etc.

18. Egor Kosov: New bounds in the problem of sampling discretization of Lp norms.

In the talk we consider the problem of Lp norms discretization by evaluating a function at a certain finite set of points for

functions from a given finite dimensional subspace. We mostly consider the cases p = 1 and p = 2 and present some new upper

bounds for the number of points sufficient for such a discretization. In addition, we discuss some general ideas used to obtain

these bounds.

19. Javad Mashreghi: A non-recoverable signal.
Given an analytic function f on the open unit disc D, or an integrable function on its boundary T = ∂D, our first attempt

to approximate f is via its partial Taylor sums sn(f) =
∑n

k=0 f̂(k)z
k or partial Fourier sums sn(f) =

∑n
k=−n f̂(k)eikt. If

this first direct approach fails, we exploit several well-developed summation methods, e.g., Abel, Borel, Cesàro, Hausdorff,

Hölder, Lindelöf, Nörlund, etc., to come up with an appropriate combination of the partial sums which converges to the original

function. More explicitly, we consider the weighted sums σn(f) =
∑n

k=0 wnk f̂(k)z
k or σn(f) =

∑n
k=−n wnk f̂(k)e

ikt.

While, in many cases, this procedure is a success story, we may naturally wonder if for each space an appropriate summability

method via partial Taylor or Fourier sums can be always designed. We show that, unfortunately, this is not always feasible.

We construct a Hilbert space H of analytic functions on D with the following properties: 1) analytic polynomials are dense in

H, 2) odd polynomials are not dense in the subspace of odd functions in H. Hence, in particular, there is an f ∈ H such that

with no lower-triangular summability method one can recover f from its partial Taylor sums sn(f). At the same token, there

is a Hilbert space of integrable functions on T such that 1) trigonometric polynomials are dense in H, 2) odd trigonometric

polynomials are not dense in the subspace of odd functions in H. Hence, as an outcome, there is a signal f ∈ H such that with

no lower-triangular summability method, we can recover f from its partial Fourier sums sn(f).

20. Qi Ye:Machine Learning in Banach Spaces: A Black-box or White-box Method?
In this talk, we study the whole theory of regularized learning for generalized data in Banach spaces including representer

theorems, approximation theorems, and convergence theorems. Specially, we combine the data-driven and model-driven methods

to study the new algorithms and theorems of the regularized learning. Usually the data-driven and model-driven methods are

used to analyze the black-box and white-box models, respectively. With the same thought of the Tai Chi diagram, we use

the discrete local information of the black-box and white-box models to construct the global approximate solutions by the

regularized learning. Our original ideas are inspired by the eastern philosophy such as the golden mean. The work of the

regularized learning for generalized data provides another road to study the algorithms of machine learning including

• the interpretability in approximation theory,

• the nonconvexity and nonsmoothness in optimization theory,

• the generalization and overfitting in regularization theory

Moreover, based on the theory of the regularized learning, we will construct the composite algorithms combining support

vector machines, artificial neural networks, and decision trees for our current research projects of the big data analytics in

education and medicine.

21. Felipe Goncalves: Bandlimited extremal functions in higher dimensions.
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We will talk about some of the challenging obstructions in constructing higher dimensional bandlimited functions with sign

constraints in physical space and support constraints in frequency space. We will give several applications of such “magic”

functions in several contexts.

22. Aleh (Oleg) Asipchuk: Construction of exponential Riesz bases on split intervals.

Let be a union of intervals of total length It is well known that exponential bases exist on but explicit expressions for such

bases are only known in special cases. In this work, we construct exponential Riesz bases on with some mild assumptions on

the gaps between the intervals. We also generalize Kadec’s stability theorem in some special and significant cases.

23. Tino Ullrich: Constructive sparsification of finite frames with application in optimal function

recovery.

We present a new constructive subsampling technique for finite frames to extract (almost) minimal plain (non-weighted)

subsystems which preserve a good lower frame bound. The technique is based on a greedy type selection of frame elements to

positively influence the spectrum of rank one updates of a matrix. It is a modification of the 2009 algorithm by Batson, Spielman,

Srivastava and produces an optimal size subsystem (up to a prescribed oversampling factor) without additional weights. It

moreover achieves this in polynomial time and avoids the Weaver subsampling (based on the Kadison-Singer theorem) which

has been applied in earlier work, yielding rather bad oversampling constants. In the second part of the talk we give applications

for multivariate function recovery. Here we consider the particular problem of L2 and L∞ recovery from sample values. In

this context, the presented subsampling technique allows to determine optimal (in cardinality) node sets even suitable for plain

least squares recovery. It can be applied, for instance, to reconstruct functions in dominating mixed-smoothness Sobolev spaces,

where we are able to discretize trigonometric polynomials with frequencies from a hyperbolic cross with nodes coming from

an implementable subsampling procedure. Inaddition we may apply this to subspaces coming from hyperbolic cross wavelet

subspaces. Numerical experiments illustrate the theoretical findings. Joint work with: Felix Bartel (Chemnitz), Martin Schaefer

(Chemnitz)

24. Laura De Carli: Weaving Riesz bases, and piecewise weighted frames.

This talk consists of two parts loosely connected to one another. In the first part we discuss the properties of a family of

Riesz bases on a separable Hilbert space obtained in the following way: For every we let where is a Riesz basis of and is a set of

unit vectors. We find necessary and sufficient conditions that ensure that the and are Riesz bases, and we apply our results to

the construction of exponential bases on domains of . In the second part of the talk we present results on weighted Riesz bases

and frames in finite or infinite-dimensional Hilbert spaces, with piecewise constant weights. We use our results to construct

tight frames in finite-dimensional Hilbert spaces.

25. Kristina Oganesyan: Hardy-Littlewood theorem in two dimensions.
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We prove the Hardy-Littlewood theorem in two dimensions for functions whose Fourier coefficients obey general monotonicity

conditions and, importantly, are not necessarily positive. The sharpness of the result is given by a counterexample, which shows

that if one slightly extends the considered class of coefficients, the Hardy-Littlewood relation fails.

26. Yeli Niu: Jackson inequality on the unit sphere Sd with dimension-free constant.

This is joint work with Feng Dai. Let denote the rate of approximation by spherical polynomials of degree at most in the

-metric on the -dimensional unit sphere . Let denote the -th order modulus of smoothness on the sphere introduced by Zeev

Ditzian using the group of rotations. We prove the following Jackson inequality on the sphere : for each positive integer and

every , with the constant depending only on . The key point here is that the constant is independent of the dimension . The

Jackson inequality on the sphere was previously established by Zeev Ditzian with the constant depending on and but going to

exponentially fast as . For and the first order moduli of smoothness (i.e., ), the Jackson inequality with dimension-free constant

on the sphere was established by D. J. Newman and H. S. Shapiro in 1964, who also pointed out that their proof didn’t work

for higher-order moduli of smoothness.

27. Gustavo Garrigos: Recent results in Weak Chebyshev Greedy Algorithms.

The Weak Chebyshev Greedy Algorithm (WCGA) is a generalization to Banach spaces of the popular Orthogonal Matching

Pursuit. For the latter, a fundamental theorem by T. Zhang establishes the optimal recovery of N-sparse signals after O(N)

iterations, under suitable RIP conditions in the dictionary. For the WCGA, however, several questions remain to be investigated.

In 2014, Temlyakov proved a deep theorem establishing Lebesgue-type inequalities for the WCGA, which guarantee stable

recovery after iterations, with the exponent depending on the geometry of the Banach space, via the power-type of its modulus

of smoothness, as well as on properties of the dictionary (which generalize RIP). In this talk we present recent work on Lebesgue-

type inequalities for the WCGA, which extend the above theorem of Temlyakov. We obtain a new bound for the number of

iterations in terms of the modulus of convexity of the dual space and similar properties of the dictionary, where this time the

parameters are no longer necessarily of power type. In particular, when applied to the spaces , with 10, we show that it suffices

with . iterations.

28. Han Feng: Generalization Analysis of deep neural networks for Classification.

Deep learning based on a neural networks is extremely efficient in solving classification problems in speech recognition,

computer vision, and many other fields. But there is no enough theoretical understanding about this topic, especially the

generalization ability of induced optimization algorithms. In this talk, we shall present the mathematical framework for binary

classification problems. For target functions associated with a convex loss function, we provide rates of Lp-approximation

and then present generalization bounds and learning rates for the excess misclassification error of the deep neural networks

classification algorithm. Our analysis is based on efficient integral discretization and other tools from approximation theory.


